SUMS OF IRREDUCIBLE OPERATORS1

PETER A. FILLMORE AND DAVID M. TOPPING

Let \mathfrak{R} be a separable, infinite-dimensional complex Hilbert space, and let $\mathfrak{R}(\mathfrak{R})$ denote the algebra of all bounded linear operators on \mathfrak{R} . A (closed, linear) subspace \mathfrak{M} of \mathfrak{R} is said to reduce an operator $T \in \mathfrak{R}(\mathfrak{R})$ if $T\mathfrak{M} \subset \mathfrak{M}$ and $T\mathfrak{M}^{\perp} \subset \mathfrak{M}^{\perp}$. An operator is irreducible if the only subspaces which reduce it are $\{0\}$ and \mathfrak{R} . Halmos has recently shown that the irreducible operators are dense in $\mathfrak{R}(\mathfrak{R})$ in the norm topology [3]. Our purpose here is to note that irreducible operators abound in another sense.

Theorem 1. Every operator in $\mathfrak{B}(\mathfrak{R})$ is the sum of four irreducible operators.

This result will be proved by means of

THEOREM 2. A selfadjoint operator is the real part of an irreducible operator if and only if it is not a scalar.

We begin with the following lemma.

LEMMA. Each projection other than 0 and I is the real part of an irreducible operator.

Write $\mathfrak{R} = \mathfrak{K} \oplus \mathfrak{K}$, let $\{e_n | n = 1, 2, \cdots \}$ and $\{f_n | n = 1, 2, \cdots \}$ be orthonormal bases of \mathfrak{K} with

$$f_1 = \frac{\sqrt{6}}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} e_n,$$

and let S be the shift operator on \mathcal{K} defined by $Sf_n = f_{n+1}$. With $A = S/\sqrt{2}$, the operator

$$U = \begin{pmatrix} A & (I - AA^*)^{\frac{1}{2}} \\ (I - A^*A)^{\frac{1}{2}} & -A^* \end{pmatrix}$$

on 30 is unitary [2, Problem 177], and

$$U\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} U^* = \frac{1}{2}\begin{pmatrix} SS^* & S \\ S^* & I \end{pmatrix}.$$

Therefore, the right side of this equation is a projection P of infinite rank and infinite nullity.

Received by the editors September 29, 1967.

¹ Research supported in part by grants from the National Science Foundation.

Now let $K = A \oplus B$, where the selfadjoint operators A and B are defined on \mathcal{K} by $Ae_n = e_n/n$ and $Be_n = e_n/n\pi$. We show that P + iK is irreducible, which will prove the lemma for projections of infinite rank and nullity. To this end, let

$$\begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$$

be a projection which commutes with P+iK, or equivalently with P and K. The commutativity with K gives AX=XA, BZ=ZB, and AY=YB, so $AYe_n=YBe_n=Ye_n/n\pi$, $Ye_n=0$ for all n, and therefore Y=0. Further, the equations AX=XA and BZ=ZB imply that X and Z are diagonal in the basis $\{e_n\}$ (that is, each e_n is an eigenvector for X and Z). Next, the commutativity with P gives $XSS^*=SS^*X$ and XS=SZ. Since SS^* is the projection on the span of the f_n for $n\geq 2$, the first equation shows that f_1 is an eigenvector for X. Coupled with the fact that X is diagonal in the basis $\{e_n\}$, this shows that X is scalar. Then XS=SZ implies $Z=S^*XS=XS^*S=X$. Consequently the projection

$$\begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$$

is scalar, and must therefore be 0 or I.

We have not been able to find a proof of this type for projections of finite (or cofinite) rank. Before proceeding with this case, we wish to note that with the information at hand, we can prove a weakened form of Theorem 1, namely: every operator is the sum of a finite number of irreducible operators. Since every operator is a finite linear combination of projections [1], and since a projection is either the sum or the difference of two projections of infinite rank and nullity, it suffices to consider projections of infinite rank and nullity. For such a projection P, there is a selfadjoint operator K such that P+iK is irreducible. Then $P=\frac{1}{2}(P+iK)+\frac{1}{2}(P-iK)$, and the operators $\frac{1}{2}(P\pm iK)$ are irreducible.

Returning to the proof of the lemma, let $\mathfrak{X} = L^2(\mu)$, with μ Lebesgue measure on [0, 1], and let P be the projection on the polynomials of degree at most n-1. Then P is of rank n, and we shall show that P+iK is irreducible, where K is defined by (Kf)(t)=tf(t) for all $f \in L^2$. If E is a projection which commutes with K, then E is given by multiplication by the characteristic function ϕ of a measurable subset A of [0,1] [2, Problem 115]. If E also commutes with P, then P leaves invariant the subspace of functions which vanish outside of A.

In particular $P\phi$ vanishes outside of A, and since it is a polynomial, we have either $\mu(A)=1$ or $P\phi=0$. In the former case E=I, and in the latter ϕ is orthogonal to the function identically equal to 1, so $\mu(A)=0$ and E=0. Therefore P+iK is irreducible. Since (I-P)+iK is also irreducible, this completes the proof of the lemma.

We remark that a proof along these lines may be constructed for the first part of the lemma. Let $\Re = L^2(0, 2\pi)$, let $\{e_n\}$ be the usual basis of exponentials, let K be defined by $Ke_n = e_n/n$ for $n \neq 0$ and $Ke_0 = 0$, and let P be the projection on $L^2(0, 2\pi a)$ with a irrational and $a \in (0, 1)$. Then P + iK is irreducible. The proof is similar to the above and will be omitted.

For the proof of Theorem 2, let H be a nonscalar selfadjoint operator. Then there exists a spectral projection P of H distinct from 0 and I. By the lemma there is a selfadjoint operator K such that P+iK is irreducible. Since for any operator T, TH=HT implies TP=PT, it follows that H+iK is irreducible. The converse is obvious: an operator with scalar real part is normal and therefore reducible.

Finally we note that any selfadjoint operator is the sum of two irreducible operators, from which Theorem 1 follows. If H is non-scalar this is a consequence of Theorem 2. If $H = \alpha I$ and T is any irreducible operator, then $\alpha I - T$ is irreducible and $\alpha I = T + (\alpha I - T)$.

ADDED IN PROOF. Heydar Radjavi has recently improved the number four in Theorem 1 to two, which is best possible. His result will appear in these Proceedings.

REFERENCES

- 1. P. A. Fillmore, Sums of operators with square zero, Acta Sci. Math. (Szeged) 28 (1967), 285-288.
- 2. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967.
 - 3. ——, Irreducible operators, Michigan Math. J. 15 (1968), 215-223.

Indiana University and Tulane University