FIXED-POINT THEOREMS FOR CERTAIN CLASSES
OF NONEXPANSIVE MAPPINGS!

L. P. BELLUCE AND W. A. KIRK

1. Introduction. A mapping f of a metric space M into itself is called
nonexpansive if d(f(x), f(y)) =d(x, y) for each x, yEM. For each
xE M, let O(f*(x)) denote the sequence of iterates of f*(x), that is,

0

O(f"(x))= U {f'('v)}7 n=07 1’ 27"'7

where it is understood that f°(x) =x. Our main purpose here is to
prove fixed-point theorems for nonexpansive mappings f for which
the diameters of the sets O(f*(x)) satisfy a condition introduced be-
low, a condition which is suggested by a consideration of the Banach
Contraction Principle. For such mappings f, compactness of M is
seen to imply that every sequence of iterates {f*(x)} of x converges
to a fixed-point of f (which is not necessarily unique) while if M is a
weakly compact, closed, and convex subset of a Banach space, then
the existence of a fixed-point for f is established. In the final section
we show how the results of this paper lead in an indirect way to a
generalization of Theorem 3 of [1].

2. Limiting orbital diameters. For a subset 4 of M, let 8(4)
=sup {d(x, y):x, yEA } denote the diameter of 4, and let f: M— M.

In general the sequence §(O(f*(x))) is nonincreasing and has limit
r(x) 2 0. We call the number 7(x) (which may be infinite) the limiting
orbital diameter of f at x, and introduce the following definition:

DEFINITION. If f is a mapping of M into itself which has the prop-
erty that for each x & M the limiting orbital diameter 7(x) of f at x is
less than 6(O(x)) when 8(O(x)) >0, then f is said to have diminishing
orbital diameters.

It is easy to give examples of nonexpansive mappings which have
diminishing orbital diameters. For let f: M— M be such that for each
xE M we have an a(x), 0=a(x) <1, and d(f(x), f(¥)) Sa(x)d(x, y) for
each yE M. Thus, for n>1, d(f(x), f*(x)) Sa(x)d(x, f~1(x)). This
gives

sup d(f(x), f*(x)) = 8(0(f(x))) = sup a(x)d(x, f*'(x))

= a(x)8(0(x)).
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Hence,

r(x) = 3im §(0(f*(%))) = 8(0(f(x)) = a(x)8(0(x)) < 8(0(x)),
if 0<8(0(x)). Thus f has diminishing orbital diameters.

For the type of mapping above, the existence of a fixed point yields
the following. Let f(xo¢) =xo. Then d(xo, f(x)) Sa(xo)d(xs, x). Also,
d(x0, fr(x)) =d(f(x0), f*(x)) Sa(xe)d(xe, f~(x)). Hence an induction
argument shows that d(xo, f*(x)) = (a(x0))"d(xe, x), for each n=1.
Thus for any xE M we have lim,_,,, f*(x) =x.

THEOREM 1. Let M be a metric space and let f be a nonexpansive
mapping of M into itself which has diminishing orbital diameters. Sup-
pose for some xE M a subsequence of the sequence {f*(x)} of iterates of
x has limit z. Then {f*(x)} has limit z and z is a fixed point of f.

ProoF. Suppose limg., f*(x) =2. Then by a theorem of Edelstein
[5, Theorem 1’], z generates an isometric sequence. This means that
for given positive integers m and #,

d(f"'(z),f”(z)) = d(fm+k(z),fn+k(z))’ k=1,2,.
Therefore if k is any positive integer,

3(0(f(2))) Slzlll)d(f(z),f”(z))
sup a(f*(2), f~*+1(2))

= 3(0(f*(2)))-

I

This implies
}i_{l}o 8(0(f*(2))) = r(2) = 8(0(f(2)))-

But 7(z) =7(f(2)). Since r(f(2)) = 6(0(f(2))), the assumption that f has
diminishing orbital diameters enables us to conclude 6(O(f(z))) =0
and thus f(z) is a fixed point of f. Continuity of f implies limg..,, f*+1(x)
=f(2). Thus if >0 there is an integer k such that d(f*+!(x), f(2)) <e.
The fact that f(z) is a fixed-point and f is nonexpansive implies
d(f*(x), f(z))<e if n=n,+1. Thus lim,., f*(x) =f(z). But since a
subsequence of { f(x) } has limit 2, 2=f(z) completing the proof.

CoROLLARY 1. If M is any compact metric space and if f is any non-
expansive mapping of M into itself which has diminishing orbital diam-
eters, then for each x & M the limiting orbital diameter r(x) of f at x is
zero, and the sequence { f"(x)} of iterates of x converges to a fixed-point

of f.
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3. Weakly compact sets. The concept of diminishing orbital diam-
eters has significant implications in noncompact settings. In this
section we obtain a result which implies that for closed convex sub-
sets of a Banach space, weak compactness is sufficient to ensure the
existence of a fixed-point for nonexpansive mappings with diminishing
orbital diameters.

First we introduce some notation. Let X be a Banach space. For a
subset 4 of X, cl co A will denote the closed convex hull of A. For
x€X and p a positive number, U(x; p) will denote the closed spherical
ball centered at x with radius p: U(x; p) = {2EX: ||x—2| <p}.

THEOREM 2. Let K be a bounded closed convex subset of a Banach
space X, and let M be a weakly compact subset of X. If f is a nonexpan-
sive mapping of K into K such that

(i) for each xEK, cl co(O(x))N\M = J, and

(ii) f has diminishing orbital diameters,
then there is a point xE M such that f(x) =x.

ProoF. If {K.} is a descending chain of closed convex (hence
weakly closed) subsets of K, each of which intersects M, then the
weak compactness of M implies (NK.)NM = &. Thus we may use
Zorn’s Lemma to obtain a subset K; of K which is minimal with re-
spect to being closed, convex, invariant under f, and having points in
common with M. Let M;=K,NM.

Let x€ K, and suppose §(0O(x)) >0. We show this assumption leads
to contradiction. By (ii) there is an integer IV such that

3(O(fY(#))) = 7 < 8(0(x)).

Let U= {zEK;: ||z—f"(x)|| <7 for almost all #}. Since 6(O(f¥ (x))) <7,
O(f¥(x))C U and thus U= . If yEU then for some integer Ny,
|ly—f»(x)|| <7 if n= N,. Since f is nonexpansive, lf () —fr+i()|| <7 if
n+1=N;+1, and thus U is mapped into itself. Clearly U is convex
since spherical balls of radius 7 centered at each two points u;, us of U
contain some common set O(f*(x)). Thus a ball of radius r centered at
any point of the segment joining #; and u, will also contain O(f(x)).
Therefore, the closure U of U is convex and mapped into itself by
f; (i) implies UNM = &, and the minimality of K; implies U =K.

Let pEK;. Then since pET, if ¢>0 there is a point p’E U such
that ||p—’|| <e. For some integer N, ||p’ —f*(x)|| <7 if n= Na. There-
fore ||p—f*(x)|| <7 +eif n= Np. Hence

cl co O(f*(x)) € U(p; 7+ o), n = No.

By (i), cl co O(f*(x)) N\ M1 &, and since M, is weakly compact there
is a point ¢ such that
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te ( N clco O(f"(:c))) N M,.

n=1
Then t&a(p; r+e) for each e. Thus t&U(p; 7). Since this is true for
each pEK,, it follows that

e N wlp; 7).
PEK,
Therefore the set
S=1{:E€Ki: K; C U(z; )}

contains {, so S is nonempty.

The remainder of our argument follows the argument given in |7].

It is easily seen that S is closed and convex. Suppose for some zE& S,
fE)E S. Let *€EH=U(f(z); r)NKy. Then [|f(x) —f@)|| <||x—2|| and
”x—z” <r. Because f(z) &S by assumption, there is a point xEK,,
such that Hx—f(z)ll >r. Hence H is a proper subset of K,. Since H is
closed, convex, and HN\ M is nonempty (because f(H) S H), we have
contradicted the minimality of K;.

Therefore f(S)ES. But

3(8) = r = 8(0(f¥(x))) < 8(0(x)) = 3(Ky)

so S is a proper subset of K;. Again the minimality of K, is contra-
dicted. Therefore the original assumption that 6(O(x)) >0 is incorrect,
and 8(O(x)) =0. This implies f(x) =x.

CoRrOLLARY 2. If K is a closed, convex, weakly compact subset of X
and if f is a nonexpansive mapping of K into itself which has diminish-
ing orbital diameters, then f has a fixed point in K.

The above corollary is obtained by observing that since K is weakly
compact, condition (i) of the theorem holds trivially upon letting
M=K.

It is not known whether Theorem 2 (or Corollary 2) remains true
without the assumption of diminishing orbital diameters of f. This
question is essentially equivalent to a question raised in [7] (as to
whether the condition of “normal structure” is necessary for the
theorem of [7]) which remains open. Similar results for nonexpansive
mappings, without orbital constraints, are given by the authorsin[1].

4. Normal structure. A very slight modification of the proof of
Theorem 2 yields a theorem which is a generalization of Theorem 3
of [1].

Let A be a bounded subset of the Banach space X. A point e E 4 is
a nondiametral point of 4 if
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supf||x — q||: « € 4} < 5(4).

A bounded convex subset K of X is said to have normal structure
(Brodskii and Milman [3]) if for each subset H of K which contains
more than one point there is a point x&H which is a nondiametral
point of H.

TuEOREM 3. Let K be a bounded closed convex subset ¢f a Banach
space X, and let M be a weakly compact subset of K. If f is a nonexpan-
sive mapping of K into K such that for each x €K

(i) cl co(OX)NM=Z, and

(ii) cl co(O(x)) has normal structure,
then there is a point x E M such that f(x) =x.

Proor. Define K; as in the proof of Theorem 2 and obtain the set
U as follows: Suppose 6(K;)>0. Let x&K,. By (ii) there is a point
yEcl co(O(x)) such that

sup{|ly — »||: w € cl co(0(x))} = r < 5(cl co(0(x))).
Let
U= {2E€K:0(f*(x)) SU(x; r) for some n}.

Then yE U so U is not empty. The closure U of U is convex and
mapped into itself by f. Therefore U = K;. Following the argument of
Theorem 2, one sees that the set

S={2E€ Ki: K, C Uz 1)}
is closed, convex, nonempty, and mapped into itself by f. But
8(S) £ 7 <8(0(x)) = 8(Ky),

so S is a proper subset of K; contradicting the minimality of Kj.
Therefore §(K;) =0 and K; consists of a single point which is fixed
under f.

Since compact convex sets have normal structure (this is essentially
Lemma 1 of [4]), we have the following corollary.

COROLLARY 3. If K 1s a closed convex weakly compact subset of X and
if f 1s a nonexpansive mapping of K into K for which O(x) is precompact
for each x EK, then f has a fixed-point in K.

Precompactnessof O(x) does not in general imply f has diminishing
orbital diameters. In fact, as a consequence of the above corollary,
one might note that if f is a periodic isometry of K into K, f has a
fixed-point.
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Some examples of spaces which possess normal structure are given
in [2].
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