FIXED-POINT THEOREMS FOR CERTAIN CLASSES OF NONEXPANSIVE MAPPINGS¹

L. P. BELLUCE AND W. A. KIRK

1. Introduction. A mapping f of a metric space M into itself is called *nonexpansive* if $d(f(x), f(y)) \leq d(x, y)$ for each $x, y \in M$. For each $x \in M$, let $O(f^n(x))$ denote the sequence of iterates of $f^n(x)$, that is,

$$O(f^{n}(x)) = \bigcup_{i=n}^{\infty} \{f^{i}(x)\}, \qquad n = 0, 1, 2, \cdots,$$

where it is understood that $f^0(x) = x$. Our main purpose here is to prove fixed-point theorems for nonexpansive mappings f for which the diameters of the sets $O(f^n(x))$ satisfy a condition introduced below, a condition which is suggested by a consideration of the Banach Contraction Principle. For such mappings f, compactness of M is seen to imply that every sequence of iterates $\{f^n(x)\}$ of x converges to a fixed-point of f (which is not necessarily unique) while if M is a weakly compact, closed, and convex subset of a Banach space, then the existence of a fixed-point for f is established. In the final section we show how the results of this paper lead in an indirect way to a generalization of Theorem 3 of [1].

2. Limiting orbital diameters. For a subset A of M, let $\delta(A) = \sup \{d(x, y) : x, y \in A\}$ denote the diameter of A, and let $f: M \to M$.

In general the sequence $\delta(O(f^n(x)))$ is nonincreasing and has limit $r(x) \ge 0$. We call the number r(x) (which may be infinite) the *limiting* orbital diameter of f at x, and introduce the following definition:

DEFINITION. If f is a mapping of M into itself which has the property that for each $x \in M$ the limiting orbital diameter r(x) of f at x is less than $\delta(O(x))$ when $\delta(O(x)) > 0$, then f is said to have diminishing orbital diameters.

It is easy to give examples of nonexpansive mappings which have diminishing orbital diameters. For let $f: M \to M$ be such that for each $x \in M$ we have an $\alpha(x)$, $0 \leq \alpha(x) < 1$, and $d(f(x), f(y)) \leq \alpha(x)d(x, y)$ for each $y \in M$. Thus, for n > 1, $d(f(x), f^n(x)) \leq \alpha(x)d(x, f^{n-1}(x))$. This gives

$$\sup_{n} d(f(x), f^{n}(x)) = \delta(O(f(x))) \leq \sup_{n} \alpha(x) d(x, f^{n-1}(x))$$
$$= \alpha(x) \delta(O(x)).$$

Received by the editors March 7, 1967.

¹ Research supported by National Science Foundation Grant GP 5994.

Hence,

$$r(x) = \lim_{n \to \infty} \delta(O(f^n(x))) \leq \delta(O(f(x)) \leq \alpha(x)\delta(O(x)) < \delta(O(x)),$$

if $0 < \delta(O(x))$. Thus f has diminishing orbital diameters.

For the type of mapping above, the existence of a fixed point yields the following. Let $f(x_0) = x_0$. Then $d(x_0, f(x)) \leq \alpha(x_0)d(x_0, x)$. Also, $d(x_0, f^n(x)) = d(f(x_0), f^n(x)) \leq \alpha(x_0)d(x_0, f^{n-1}(x))$. Hence an induction argument shows that $d(x_0, f^n(x)) \leq (\alpha(x_0))^n d(x_0, x)$, for each $n \geq 1$. Thus for any $x \in M$ we have $\lim_{n \to \infty} f^n(x) = x_0$.

THEOREM 1. Let M be a metric space and let f be a nonexpansive mapping of M into itself which has diminishing orbital diameters. Suppose for some $x \in M$ a subsequence of the sequence $\{f^n(x)\}$ of iterates of x has limit z. Then $\{f^n(x)\}$ has limit z and z is a fixed point of f.

PROOF. Suppose $\lim_{k\to\infty} f^{n_k}(x) = z$. Then by a theorem of Edelstein [5, Theorem 1'], z generates an isometric sequence. This means that for given positive integers m and n,

$$d(f^{m}(z), f^{n}(z)) = d(f^{m+k}(z), f^{n+k}(z)), \qquad k = 1, 2, \cdots$$

Therefore if k is any positive integer,

$$\delta(O(f(z))) = \sup_{n \ge 1} d(f(z), f^n(z))$$
$$= \sup_{n \ge 1} d(f^k(z), f^{n+k-1}(z))$$
$$= \delta(O(f^k(z))).$$

This implies

$$\lim_{k\to\infty} \delta(O(f^k(z))) = r(z) = \delta(O(f(z))).$$

But r(z) = r(f(z)). Since $r(f(z)) = \delta(O(f(z)))$, the assumption that f has diminishing orbital diameters enables us to conclude $\delta(O(f(z))) = 0$ and thus f(z) is a fixed point of f. Continuity of f implies $\lim_{k\to\infty} f^{n_k+1}(x) = f(z)$. Thus if $\epsilon > 0$ there is an integer k such that $d(f^{n_k+1}(x), f(z)) < \epsilon$. The fact that f(z) is a fixed-point and f is nonexpansive implies $d(f^n(x), f(z)) < \epsilon$ if $n \ge n_k + 1$. Thus $\lim_{n\to\infty} f^n(x) = f(z)$. But since a subsequence of $\{f^n(x)\}$ has limit z, z = f(z) completing the proof.

COROLLARY 1. If M is any compact metric space and if f is any nonexpansive mapping of M into itself which has diminishing orbital diameters, then for each $x \in M$ the limiting orbital diameter r(x) of f at x is zero, and the sequence $\{f^n(x)\}$ of iterates of x converges to a fixed-point of f. FIXED-POINT THEOREMS

3. Weakly compact sets. The concept of diminishing orbital diameters has significant implications in noncompact settings. In this section we obtain a result which implies that for closed convex subsets of a Banach space, weak compactness is sufficient to ensure the *existence* of a fixed-point for nonexpansive mappings with diminishing orbital diameters.

First we introduce some notation. Let X be a Banach space. For a subset A of X, cl co A will denote the closed convex hull of A. For $x \in X$ and ρ a positive number, $\mathfrak{U}(x;\rho)$ will denote the closed spherical ball centered at x with radius $\rho: \mathfrak{U}(x;\rho) = \{z \in X : ||x-z|| \le \rho\}.$

THEOREM 2. Let K be a bounded closed convex subset of a Banach space X, and let M be a weakly compact subset of X. If f is a nonexpansive mapping of K into K such that

(i) for each $x \in K$, cl $co(O(x)) \cap M \neq \emptyset$, and

(ii) f has diminishing orbital diameters,

then there is a point $x \in M$ such that f(x) = x.

PROOF. If $\{K_{\alpha}\}$ is a descending chain of closed convex (hence weakly closed) subsets of K, each of which intersects M, then the weak compactness of M implies $(\bigcap K_{\alpha}) \cap M \neq \emptyset$. Thus we may use Zorn's Lemma to obtain a subset K_1 of K which is minimal with respect to being closed, convex, invariant under f, and having points in common with M. Let $M_1 = K_1 \cap M$.

Let $x \in K_1$ and suppose $\delta(O(x)) > 0$. We show this assumption leads to contradiction. By (ii) there is an integer N such that

$$\delta(O(f^N(x))) = r < \delta(O(x)).$$

Let $U = \{z \in K_1 : ||z - f^n(x)|| \le r$ for almost all $n\}$. Since $\delta(O(f^N(x))) \le r$, $O(f^N(x)) \subseteq U$ and thus $U \ne \emptyset$. If $y \in U$ then for some integer N_1 , $||y - f^n(x)|| \le r$ if $n \ge N_1$. Since f is nonexpansive, $||f(y) - f^{n+1}(x)|| \le r$ if $n+1 \ge N_1+1$, and thus U is mapped into itself. Clearly U is convex since spherical balls of radius r centered at each two points u_1, u_2 of Ucontain some common set $O(f^n(x))$. Thus a ball of radius r centered at any point of the segment joining u_1 and u_2 will also contain $O(f^n(x))$. Therefore, the closure \overline{U} of U is convex and mapped into itself by f: (i) implies $\overline{U} \cap M \ne \emptyset$, and the minimality of K_1 implies $\overline{U} = K_1$.

Let $p \in K_1$. Then since $p \in \overline{U}$, if $\epsilon > 0$ there is a point $p' \in U$ such that $||p-p'|| < \epsilon$. For some integer N_2 , $||p'-f^n(x)|| \le r$ if $n \ge N_2$. Therefore $||p-f^n(x)|| \le r+\epsilon$ if $n \ge N_2$. Hence

cl co
$$O(f^n(x)) \subseteq \mathfrak{U}(p; r + \epsilon), \quad n \ge N_2.$$

By (i), cl co $O(f^n(x)) \cap M_1 \neq \emptyset$, and since M_1 is weakly compact there is a point *t* such that

1969]

$$t \in \left(\bigcap_{n=1}^{\infty} \operatorname{cl} \operatorname{co} O(f^n(x)) \right) \cap M_1.$$

Then $t \in \mathfrak{U}(p; r+\epsilon)$ for each ϵ . Thus $t \in \mathfrak{U}(p; r)$. Since this is true for each $p \in K_1$, it follows that

$$t \in \bigcap_{p \in K_1} \mathfrak{U}(p; r).$$

Therefore the set

$$S = \{z \in K_1: K_1 \subseteq \mathfrak{U}(z; r)\}$$

contains t, so S is nonempty.

The remainder of our argument follows the argument given in [7].

It is easily seen that S is closed and convex. Suppose for some $z \in S$, $f(z) \notin S$. Let $x \in H = \mathfrak{U}(f(z); r) \cap K_1$. Then $||f(x) - f(z)|| \leq ||x - z||$ and $||x - z|| \leq r$. Because $f(z) \notin S$ by assumption, there is a point $x \in K_1$, such that ||x - f(z)|| > r. Hence H is a *proper* subset of K_1 . Since H is closed, convex, and $H \cap M$ is nonempty (because $f(H) \subseteq H$), we have contradicted the minimality of K_1 .

Therefore $f(S) \subseteq S$. But

$$\delta(S) \leq r = \delta(O(f^N(x))) < \delta(O(x)) \leq \delta(K_1)$$

so S is a proper subset of K_1 . Again the minimality of K_1 is contradicted. Therefore the original assumption that $\delta(O(x)) > 0$ is incorrect, and $\delta(O(x)) = 0$. This implies f(x) = x.

COROLLARY 2. If K is a closed, convex, weakly compact subset of X and if f is a nonexpansive mapping of K into itself which has diminishing orbital diameters, then f has a fixed point in K.

The above corollary is obtained by observing that since K is weakly compact, condition (i) of the theorem holds trivially upon letting M = K.

It is not known whether Theorem 2 (or Corollary 2) remains true without the assumption of diminishing orbital diameters of f. This question is essentially equivalent to a question raised in [7] (as to whether the condition of "normal structure" is necessary for the theorem of [7]) which remains open. Similar results for nonexpansive mappings, without orbital constraints, are given by the authors in [1].

4. Normal structure. A very slight modification of the proof of Theorem 2 yields a theorem which is a generalization of Theorem 3 of [1].

Let A be a bounded subset of the Banach space X. A point $a \in A$ is a nondiametral point of A if

$$\sup\{||x-a||: x \in A\} < \delta(A).$$

A bounded convex subset K of X is said to have *normal structure* (Brodskii and Milman [3]) if for each subset H of K which contains more than one point there is a point $x \in H$ which is a nondiametral point of H.

THEOREM 3. Let K be a bounded closed convex subset of a Banach space X, and let M be a weakly compact subset of K. If f is a nonexpansive mapping of K into K such that for each $x \in K$

(i) cl $co(O(x)) \cap M \neq \emptyset$, and

(ii) cl co(O(x)) has normal structure, then there is a point $x \in M$ such that f(x) = x.

PROOF. Define K_1 as in the proof of Theorem 2 and obtain the set U as follows: Suppose $\delta(K_1) > 0$. Let $x \in K_1$. By (ii) there is a point $y \in \text{cl co}(O(x))$ such that

$$\sup\{||y-w||: w \in \operatorname{cl} \operatorname{co}(O(x))\} = r < \delta(\operatorname{cl} \operatorname{co}(O(x))).$$

Let

$$U = \{z \in K_1 : O(f^n(x)) \subseteq \mathfrak{U}(x; r) \text{ for some } n\}.$$

Then $y \in U$ so U is not empty. The closure \overline{U} of U is convex and mapped into itself by f. Therefore $\overline{U} = K_1$. Following the argument of Theorem 2, one sees that the set

$$S = \left\{ z \in K_1 \colon K_1 \subseteq \mathfrak{U}(z; r) \right\}$$

is closed, convex, nonempty, and mapped into itself by f. But

$$\delta(S) \leq r < \delta(O(x)) \leq \delta(K_1),$$

so S is a proper subset of K_1 contradicting the minimality of K_1 . Therefore $\delta(K_1) = 0$ and K_1 consists of a single point which is fixed under f.

Since compact convex sets have normal structure (this is essentially Lemma 1 of [4]), we have the following corollary.

COROLLARY 3. If K is a closed convex weakly compact subset of X and if f is a nonexpansive mapping of K into K for which O(x) is precompact for each $x \in K$, then f has a fixed-point in K.

Precompactness of O(x) does not in general imply f has diminishing orbital diameters. In fact, as a consequence of the above corollary, one might note that if f is a periodic isometry of K into K, f has a fixed-point.

1969]

Some examples of spaces which possess normal structure are given in [2].

References

1. L. P. Belluce and W. A. Kirk, Fixed-point theorems for families of contraction mappings, Pacific J. Math. 19 (1966), 213-217.

2. L. P. Belluce, W. A. Kirk and E. F. Steiner, Normal structure in Banach spaces, Pacific J. Math. (to appear).

3. M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840.

4. Ralph De Marr, Common fixed-points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139-1141.

5. M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.

6. -----, On nonexpensive mappings, Proc. Amer. Math. Soc. 15 (1964), 689-695.

7. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 73 (1965), 1004–1006.

UNIVERSITY OF CALIFORNIA, RIVERSIDE