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1. Introduction. A mapping/of a metric space M into itself is called

nonexpansive if d(f(x), f(y))^d(x, y) for each x, y£Af. For each

xCM, let 0(f"ix)) denote the sequence of iterates of/"(x), that is,

Oifix)) = U   {/•(*)},       » = 0,1,2,:..,
»=B

where it is understood that/°(x)=x. Our main purpose here is to

prove fixed-point theorems for nonexpansive mappings / for which

the diameters of the sets 0(fn(x)) satisfy a condition introduced be-

low, a condition which is suggested by a consideration of the Banach

Contraction Principle. For such mappings /, compactness of M is

seen to imply that every sequence of iterates {/"(x)} of x converges

to a fixed-point of/ (which is not necessarily unique) while if M is a

weakly compact, closed, and convex subset of a Banach space, then

the existence of a fixed-point for/ is established. In the final section

we show how the results of this paper lead in an indirect way to a

generalization of Theorem 3 of [l].

2. Limiting orbital diameters. For a subset A of M, let 5(^4)

= sup {dix, y) : x, yCA } denote the diameter of A, and let/: A7—»A7.

In general the sequence o(0(/"(x))) is nonincreasing and has limit

>"(x) = 0. We call the number r(x) (which may be infinite) the limiting

orbital diameter of f at x, and introduce the following definition:

Definition. If/ is a mapping of M into itself which has the prop-

erty that for each x£ M the limiting orbital diameter r(x) of / at x is

less than 5(0(x)) when 5(0(x)) >0, then/ is said to have diminishing

orbital diameters.

It is easy to give examples of nonexpansive mappings which have

diminishing orbital diameters. For let/: M—*M be such that for each

xCM we have an a(x), 0^a(x) <1, and d(fix),fiy)) ^a(x)d(x, y) for

each yCM. Thus, for «>1, d(f(x), f«(x))^a(x)d(x, /""H*))- This
gives

sup d(/(x),/»(*)) = 8(0(f(x))) ^ sup a(x)d(x,f»-\x))
n n

= a(x)5(0(x)).
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Hence,

r(x) =  lim S(0(fn(x))) ^ S(0(f(x)) ^ a(x)ô(0(x)) < S(0(x)),
n—>oo

if 0<Ô(O(x)). Thus/ has diminishing orbital diameters.

For the type of mapping above, the existence of a fixed point yields

the following. Let/(xo)=xo. Then d(xo, /(x))^a(xo)¿(x0, x). Also,

dixo, f"ix))=d(fixo), fnix))^aixo)dix0, f"~xix)). Hence an induction

argument shows that d(xo, f"(x)) ^ (a(xo))"á(x0, x), for each «_1.

Thus for any x£ M we have Umn-.xfnix) =Xo.

Theorem 1. Let M be a metric space and let f be a nonexpansive

mapping of M into itself which has diminishing orbital diameters. Sup-

pose for some xCM a subsequence of the sequence j/n(x)} of iterates of

x has limit z. Then j/"(x)} has limit z and z is a fixed point off.

Proof. Suppose lim**»/"*(») =2. Then by a theorem of Edelstein

[5, Theorem 1'], z generates an isometric sequence. This means that

for given positive integers m and «,

d(f»(z),f"(z)) = d(f*">(z),f**(z)),       k - 1, 2, - - • .

Therefore if k is any positive integer,

8(0(/(*))) = sup d(f(z),f"(z))
»SI

= SUV d(f(z),f»+^(z))
nàl

= &(0(f*(z))).

This implies

lim S(0(f(z))) = r(z) = 8(0(f(z))).

But riz) =r(/(2)). Since r(f(z))=S(0(f(z))), the assumption that/ has

diminishing orbital diameters enables us to conclude b(Oifiz)))=0

and thus/(2) is a fixed point of/. Continuity of/ implies lim^x fnk+1ix)

=fiz). Thus if e>0 there is an integer k such that ¿(fn*+1(x),/(2)) <e.

The fact that fiz) is a fixed-point and / is nonexpansive implies

d(fn(x), /(«))<€ if »è»*+l. Thus limB..w/"(x) =/(z). But since a

subsequence of {f"(x)} has limit z, z =/(z) completing the proof.

Corollary 1. If M is any compact metric space and iff is any non-

expansive mapping of M into itself which has diminishing orbital diam-

eters, then for each xCM the limiting orbital diameter r(x) of f at x is

zero, and the sequence {/"(x)} of iterates of x converges to a fixed-point

off-
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3. Weakly compact sets. The concept of diminishing orbital diam-

eters has significant implications in noncompact settings. In this

section we obtain a result which implies that for closed convex sub-

sets of a Banach space, weak compactness is sufficient to ensure the

existence of a fixed-point for nonexpansive mappings with diminishing

orbital diameters.

First we introduce some notation. Let A be a Banach space. For a

subset A of X, cl co A will denote the closed convex hull of A. For

xCX and p a positive number, 11 (x; p) will denote the closed spherical

ball centered at x with radius p: Olix; p) = {zCX: \\x — z\\^p}.

Theorem 2. Let K be a bounded closed convex subset of a Banach

space X, and let M be a weakly compact subset of X. Iff is a nonexpan-

sive mapping of K into K such that

(i) for each x£A, cl co(0(x))nAf 9^0, and

(ii) / has diminishing orbital diameters,

then there is a point xCM such that fix) =x.

Proof. If {Ka] is a descending chain of closed convex (hence

weakly closed) subsets of K, each of which intersects M, then the

weak compactness of M implies if)Ka)r\M¿¿0. Thus we may use

Zorn's Lemma to obtain a subset Ki of K which is minimal with re-

spect to being closed, convex, invariant under/, and having points in

common with M. Let Mi = Kir\M.

Let xCKi and suppose b(O(x))>0. We show this assumption leads

to contradiction. By (ii) there is an integer N such that

8(0(f(x))) = r < 5(0(x)).

Let í/={z£7íi:||z-/"(x)||árfor almost all«}. Since o(0(fif(x)))^r,

0(flf(x))QU and thus U¿¿0. If yCU then for some integer JVi,

||y—/n(x)|| ^r ií n¡±Ni. Since/ is nonexpansive, ||/(y)— /n+1(*)|| ¿r if

w + l^A^ + l, and thus U is mapped into itself. Clearly U is convex

since spherical balls of radius r centered at each two points uu u2 of U

contain some common set 0(/"(x)). Thus a ball of radius r centered at

any point of the segment joining ui and u2 will also contain 0(/"(x)).

Therefore, the closure U oí U is convex and mapped into itself by

/; (i) implies Ur\M¿¿0, and the minimality of Ki implies U = Ki.

Let pCKi. Then since pCÛ, if «>0 there is a point p'CU such

that \\p— p'\\ <e. For some integer N2, \\p'—fnix)\\ ^riin^N2. There-

fore ||p—/"(x)|| = r+tiin^N2. Hence

cl co 0(fn(x)) Ç %(p; r+e),       « ^ Ni.

By (i), cl co 0(f*(x))ryMir¿0, and since Afi is weakly compact there

is a point t such that



144 L. P. belluce and w. a. kirk [January

t c ( n ci co o(fn(x)) j n Mi.

Then ¿£1l(£; r+e) for each e. Thus tC^-iP; r). Since this is true for

each pCKi, it follows that

tC   H   %(p;r).

Therefore the set

5= {zCKi: KiQ%(z;r)}

contains t, so S is nonempty.

The remainder of our argument follows the argument given in [7].

It is easily seen that 5 is closed and convex. Suppose for some 2£5,

/(2)£ 5. Let x£77=cu(/(z); r)C\Ki. Then \\f(x)-f(z)\\ g\\x-z[\ and
||x —z||gr. Because/(z)£ S by assumption, there is a point x£Ai,

such that ||x—/(z)|| >r. Hence 77 is a proper subset of Ki. Since 77 is

closed, convex, and H(~\M is nonempty (because f(H)QH), we have

contradicted the minimality of Ki.

Thereforef(S)QS. But

&(S) = r = o(0(f»(x))) < d(0(x)) = 8(Ki)

so 5 is a proper subset of Ki. Again the minimality of Ki is contra-

dicted. Therefore the original assumption that 5(0(x)) > 0 is incorrect,

and o(0(x)) =0. This implies/(x) =x.

Corollary 2. If K is a closed, convex, weakly compact subset of X

and if f is a nonexpansive mapping of K into itself which has diminish-

ing orbital diameters, then f has a fixed point in K.

The above corollary is obtained by observing that since K is weakly

compact, condition (i) of the theorem holds trivially upon letting

M = K.
It is not known whether Theorem 2 (or Corollary 2) remains true

without the assumption of diminishing orbital diameters of /. This

question is essentially equivalent to a question raised in [7] (as to

whether the condition of "normal structure" is necessary for the

theorem of [7]) which remains open. Similar results for nonexpansive

mappings, without orbital constraints, are given by the authors in [l ].

4. Normal structure. A very slight modification of the proof of

Theorem 2 yields a theorem which is a generalization of Theorem 3

of [1].
Let A be a bounded subset of the Banach space X. A point aCA is

a nondiametral point of A if
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supfU* - o||: xC A} < 5(A).

A bounded convex subset A of A is said to have normal structure

(Brodskii and Milman [3]) if for each subset 77 of K which contains

more than one point there is a point x£7/ which is a nondiametral

point of 77.

Theorem 3. Let K be a bounded closed convex subset of a Banach

space X, and let M be a weakly compact subset of K. Iff is a nonexpan-

sive mapping of K into K such that for each x£ K

(i) cl co(O(x))r\M7*0, and
(ii) cl co(0(x)) has normal structure,

then there is a point x£ M such that fix) =x.

Proof. Define Ki as in the proof of Theorem 2 and obtain the set

U as follows: Suppose o(Ai)>0. Let x£7£i. By (ii) there is a point

y£cl co(0(x)) such that

sup{||y - uf|| : w £ cl co(0(*))} = r < 5(cl co(0(*))).

Let

U= {zCKi:0(fH(x)) Çll(*; r) for some «}.

Then yCU so U is not empty. The closure U of 77 is convex and

mapped into itself by/. Therefore U = KX. Following the argument of

Theorem 2, one sees that the set

S = {zCKi: KiQ 11(2:0}

is closed, convex, nonempty, and mapped into itself by/. But

S(S) Ú r < ¿(0(x)) á 5(Ki),

so 5 is a proper subset of Kx contradicting the minimality of Ki.

Therefore 5(Ai)=0 and Ki consists of a single point which is fixed

under /.

Since compact convex sets have normal structure (this is essentially

Lemma 1 of [4]), we have the following corollary.

Corollary 3. If K is a closed convex weakly compact subset of X and

iff is a nonexpansive mapping of K into K for which 0(x) is precompact

for each x£A, thenf has a fixed-point in K.

Precompactness'of 0(x) does not in general imply/ has diminishing

orbital diameters. In fact, as a consequence of the above corollary,

one might note that if / is a periodic isometry of K into K, f has a

fixed-point.
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Some examples of spaces which possess normal structure are given

in [2].
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