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HILBERT SPACES
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The stochastic integral of a process with values in a separable Hu-

bert space with respect to Brownian operators has been defined in [l ],

and it was proved that the corresponding stochastic differential equa-

tions have unique solutions under natural assumptions.

We shall give here a rather different definition of Brownian operator ;

the stochastic integrals with respect to these new Brownian operators

may be defined in the same way, and stochastic differential equations

may be considered as before. The principal result is that the Levy-Itô

formula for stochastic differentiation of composite functions may be

extended to the present case.
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1. Brownian operators. Let (Í2, a, P) be a probability space, and

let 77 be a separable real Hubert space. Since 77 is separable, a func-

tion x: 12—»77 is strongly measurable if and only if it is weakly mea-

surable. The measurable functions x: 12—»77 will be called 77-valued

random variables. We denote by Hp the Hubert space of 77-valued

random variables for which the norm ||x||p= (£{[|x||2})1/2 is finite,

and denote the inner product by (• , Op-

Let / be the interval [0, T) and let ¡j. be Lebesgue measure on J

with the <r-field $ of Borel sets. If, in the previous definition of Hp,

we replace (12, a, P) by (J, ï, ;ii), the Hubert space thus obtained will

be denoted by 77,,. We shall adjoin to any symbol denoting a Hubert

space the indexes P or ¡j, in order to denote the corresponding spaces

constructed as above; the corresponding norms and inner prod-

ucts will be denoted by the same indexes. For instance, ||x||ji„

= fjE{\\x(t, -)||2}^.
The symbol A with or without indexes will stand for an interval of

J of the form A= [r, s); its endpoints will be denoted by A~ = r and

A+ = s, and the inequalities A^¿, A'<A mean that no point in A is

larger than ¿, and no point in A' is larger than any in A. Given any

process f with domain /, its increment f(A+) — f(A_) will be denoted

by f (A).
Let us introduce now the definition of Brownian operator; in what

follows, 77 and K are two fixed separable Hubert spaces.
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Definition 1.1. A Brownian operator on H to K is the pair

ß = ((&, ß) where 03 is a decreasing family of sub fields of ft: (B(/)(/GJ),

and ß is a mapping from J into bounded linear operators from H to

Kp such that

(bo) the random variables in the range ofß(A) are (&(A~)-measurable,

(bi) for any tEJ, the random variables in the range of {/3(A) | A ^/}

are independent of (&(t),

(b2) the processes {(ßh,k)\ hEH, kEK} are a family of scalar

Brownian motions, that is, every finite linear combination of the pro-

cesses of the family is a new real Brownian motion up to a constant factor,

(b3) for every hEH and every AEJ, \\ß{A)h\\p = \\h\\ V(A), and there

exists a constant q such that E{\\ß(A)h\\i} úq\\h\\V(A).

Given a Brownian operator ß = ((B, /?), let HP(ß, t) be the subspace

of Hp generated by the stochastic variables xEHP independent of

<$>(t). Then the operator /3(A) : F—>FP may be extended to HP(ß, A~)

in the following way. Let hiEH, fi<G(B(A-) (i = l, 2, •••,«) be

given; then we define /3(A) ¿2iXaJii'm ^LiXoß(A)hi, and it follows that

||£(A) Zoés^UpHI ¿<Xö,^||pM(A), so that /3(A) may be extended to
the closure of the set of finite sums of the form ^iXafii, namely

HP(ß, A-), and furthermore ||j8(A)*J|| = |H||m(A) for any xEHP(ß, A~).

Lemma 1.1. Given a Brownian operator j3 = ((B, /3) on H to K, two

intervals A<A' in J and two random variables xEHP(ß, A-), x'

EHP(ß, A'-), the extensions of /3(A), /3(A') satisfy:
(i) E{ß(A)x}=0,

(ii) ||/3(A)x||2p = IW|!m(A),
(iii) (ß(A)x,ß(A')x')P = 0.

Part i is obvious, part ii has already been proved, and part iii fol-

lows from the fact that /3(A') is independent of ß(A)x and of x'.

Definition 1.2. Given a Brownian operator ß = ((S>, ß), the process f

with domain J is said to be nonanticipating with respect to ß when for

each tEJ, the set {f(/')| t'^t} is independent of (B(Z). (See [5]; this
definition corresponds to Itô's property (a), [3].)

Definition 1.3. A process f with domain J is said to be simple when

there exists a partition (P of the interval J such that the restriction of f

to each A£(P is a constant random variable.

The following lemma has been essentially proved in [l, Lemmas

3,4.3,5.3].

Lemma 1.2. Let ß be a Brownian operator on H to K. Then the set of

simple nonanticipating processes is dense among all nonanticipating

processes.
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2. Stochastic integral. Given a simple nonanticipating process

%EHpß of the form   /,tYApti with Xi independent of 5(Ar), define

j (dß)S= T,ß(Ai)xi.

By Lemma 1.1,

(i) I f mt
and taking limits in the obvious manner, we may define the stochastic

integral fj(dß)£ for any nonanticipating %EHPll so that (1) still holds.

Moreover, it is obvious that E{jj(dß)%} =0.

Theorem 2.1. Given a nonanticipating ¡¡EHp„ and the Brownian

operator ß on H to K, the stochastic integral f0dß(t)^(t) has a continuous

version.

Itô's proof of the existence of continuous versions in the one-

dimensional case [2, Theorem 8] is based in the validity of the con-

clusion for the integrals of simple processes, and may be applied here;

the generalization of Kolmogorov's inequality used to pass from sim-

ple to general £ is also valid in the infinite-dimensional case, as has

been shown in [l, Lemma 5.1]. It remains to show the existence of

continuous versions in the case in which £ is simple, and there is no

loss in assuming that £ is constant as a function of t, and bounded'as a

function of coG12. Given such a £, the inequality

(2) £ ill f á/3(¿)£||4}   = E{\\ß(A)H\\'} S;qE{\\ï\\*}S(A)
III«' A II   *

holds, since the fact that £ is nonanticipating means that it is inde-

pendent of ß. This permits us to apply a theorem of Kolmogorov [ó]

which states that if a>0, /3>1 and 7 is a process with values in a

metric space such that for each interval A

(3) £{ I 7(A) |«} á C/AA)

(where C is a constant and | -y | denotes dist(7, 0)), then 7 has a con-

tinuous version. Here a=4, ß = 2 and C = g£{||£||4} and the result

follows.

3. Stochastic differentiation of composite functions. Let </>: K-^R

be a function with first and second derivatives Dcp:K—*K and

D2<p: K-*L(K, K), such that, for ko, kEK, D2<p(kQ) is bounded, sym-

metric, and continuous in the operator topology, and

= HA,
p
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<p(ko 4- ¿) = *(*.) + (Dd,(k0), k) 4- %(D2i>(ko)k, k) 4- o2(k),

where limiuiUo ||¿||_í02(¿) =0.

We shall consider the stochastic integral

»,(/) = V 4"  f  w(r)dr 4-  f  á|8(r)a;(r)
•/o «'o

where wEKP¡¡ and xEHPß are nonanticipating processes, and we

shall prove that, for Z = 0,

*(i»(0) = *fo°) +  f   (0*(l(r)), w(t))¿t +  f   (D<p(r,(r)), dß(r)x(r))

a)        t -;0 Jo

+ — f   (^^(nWJdlSWxW, dß(r)x(r)),
¿Jo

thus generalizing Itô's formula [3].

The meaning of the integrals in (1) is explained in the following.

The first integral requires no explanation. In order to deal with the

second, suppose that x= ]>2x¿xa is a simple nonanticipating process

in HP„ and v^= S ^aXa 1S a F-valued simple nonanticipating

process such that ||^|| is bounded by a constant C. We define

X(*,<#*)-E(*a,0(A)*a)

and from

F j| J (*, dßx) |2|  g F| D ||^|H|*A||V(A)| ,

r2\\   II2C \\x\\i

the inequality

(2)   f||£(^,^x)|2| * e{Jwmûxww'dfy =

follows. Then we can extend the definition of fj(ip, dßx) for nonantici-

pating xEHp„, by taking a sequence (x„) of simple nonanticipating

processes such that ||*i»—xHp,,—>0 and passing to the limit in

fjtf, dßxn). Now E{\SM, dßx)\2} =£{ Ea||^II2/a||x(/)||^/} holds
and (2) follows again. For any nonanticipating \p which is a Borel

function of / and satisfies ||^||=C, and any nonanticipating

xEHpp, the definition is extended by taking a sequence of simple

nonanticipating uniformly bounded processes (^n), such that

ess sup,ej\\^n(t) — ̂ (/)||—>0 as «—»«, and setting
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f (*, dßx)  =   lim     f (*„, dßx.)■

Thisñntegral has a continuous version in ¿, and satisfies (2). Now it

can be further extended to the case in which P{ess supie%r||^)|| < » }

= 1, and this is the case of the second integral of (1) with Dd> instead

of \¡/, since 77 and hence D<j>(r)) is a.s. continuous.

As to the third integral, consider a nonanticipating process

xEHPl¡ and a bounded symmetric operator-valued nonanticipating

process \p with ||«^| ^C< 00. Given any interval AC-7, let us define

(t(A-)ß(A)x(A-),ß(A)x(A-))

as the mean over /3(A) of (\p(A-)ß(A)x(A~), ß(A)x(A~)). For simple

\[s= ^a ^aXa and x= XIaXaXa, we define

(3) f ft-d/íx, d/îx) = £ (^8(A)xA) 0(A)xA).
*'/ A

The estimate

I <*4/3(a)x4>0(a)*a>| =s ||*A|| ||xa||V(A)

leads to

(4) EÜf(fdßx,dßx) J-   g £|Jj|^(0||||x(0||^| ;

therefore, using now convergence in the mean, the definition (3) is

extended as above for nonanticipating xEHPli and processes yp which

are Borel functions of ¿, such that ||<//|| ̂  C; the integral has a continu-

ous version in t, and satisfies (4). On the other hand, the estimate

EU 2 ((^(A-)^(A)x(A-),/3(A)x(A-))
il    A

|J .
- (*(A-)/3(A)x(A-),i8(A)x(A-)))    >  g constant X ZV(A)

I   / A

shows that if maxA /¿(A)—»0, then

£ {I E (*(A-)0(A)x(A-), ß(A)x(A~))

(5) n- Z (^(A-)^(A)X(A-), ̂ (A)x(A-))   V -+0
A I 7
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and this justifies the use of the symbol fj(\pdßx, dßx) for the integral

just defined. As in the previous case, the integral can further be ex-

tended to the case in which P{sup(ej||^(¿)|| < °° } =1, and this is the

case of the third integral of (1), with D2<f> in the place of \f/.

Now we proceed to prove (1), noticing first that several reductions

can be made. Let us introduce the stopping time

Tn = max{¿G/|    forO ^ r < ¿, \\D<¡>(v(r))\\ + ||ö2c6(7,(t))|| < n},

which satisfies P {lim„_w Tn = T} =1, and prove (1) for each stopped

process

Vn(t) = 77° + J    X(o,r„)(T)w(r)(iT +  I    di3(r)xco,r„)(T)x(r).

This allows us to assume that D<f> and D*<p are uniformly bounded.

Since the integrals in (1) have continuous versions, it is enough to

prove the equality for fixed ¿. The process of construction of the inte-

grals shows that it is enough to prove it for simple w and x, and hence

for constant w and x because of the additivity in t. Moreover, the

notations will be shortened by setting w = 0 ; the proof can be repeated

in the same way, taking account of a possibly nonvanishing w, with

no additional trouble. Furthermore, the constant nonanticipating

random variable x must be independent of all the increments /3(A);

hence there is no loss in assuming x = hEH. Finally, with /3(0)=0

and t = T, r¡(t) becomes ß(t)h and (1) reduces to

(6) cb o 7,(7) = j (77<K„(r)), dß(r)h) + — j (D^(V(r))dß(r)h, dß(r)h)

which we prove as follows.

Given a sequence ((P„) of partitions of J with norm tending to zero,

we may write

<p o t,(/) =   £  [(D<p o 7,(A-), ß(A)h) + |(Z)V o V(A~)ß(A)h, ß(A)h)
A€fl>„

+ o2(ß(A)h)\.

The steps in the definitions of Jj(D<j>(r¡), dßh) and fj(D2d)(r))dßh, dßh),

and the remark (5), show that

(7) e{\  E  (7tyo7,(A-),0(A)A)- f (D</>(7,), <W TI ^0,
\\ Ae(P„ J J \  J

and
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/0e\\   £  (D24>ov(A-)ß(A)h,ß(A)h)~ f (D2<b(v)dßh, dßh)  1 ->0,
(ö)        l| Ae<P„ Jj )

n—»    00.

Moreover,

e{\ Z ||/î(a)a||2-||a||v(a)|2}
11 Ae(Pn I    '

= e{ £ (||/î(a)â||2-||a||va))2}->o
v ag(p„ ;

as n—*<*>. Therefore a subsequence ((Pn¡) may be chosen in such a

way that

lim  £ o2(ß(A)h) = O    a.s.
A£<P

Taking account of (7) and (8), it follows that (<?„,) may be also

chosen in such a way that

lim  £  (Dd>ari(A-),ß(A)h) =  J  (D<p(r¡), dßh)    a.s.

a.s.lim  X  (-P2* o v(A~)ß(A)h, ß(A)h) =  |  (D2<p(r,)dßh, dßh)

n,'

and this proves (6).
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