A THEOREM ON INFINITE POSITIVE MATRICES¹

E. NETANYAHU AND M. REICHAW

1. Let $A = (a_{ij})$ be an infinite matrix with positive elements $a_{ij} > 0$, $i, j = 0, 1, \dots$, (matrices (a_{ij}) with $a_{ij} > 0$ will be called in the sequel positive matrices).

It was proved in [3], that

(1) if A is a *finite* positive matrix, a unique doubly stochastic matrix T exists such that $T = D_1AD_2$ where D_1 and D_2 are diagonal matrices with all elements on the diagonal positive and are unique up to a scalar factor.

The method used in [3], and introduced first in [4], is a constructive one and consists in alternate normalizing rows and columns of A and proving the convergence of this procedure. Another proof of (1) was given in [1]. This second proof uses besides Brouwer's fixed point theorem the fact, that

(2) the set $\{x = (x_0, x_1, \dots, x_n); x_i \text{ real numbers, } \sum_{i=0}^n x_i^2 = 1 \text{ and } x_i \ge 0\}$ is homeomorphic to an *n*-dimensional ball.

Although a purely existential one, this second proof contains a statement about the existence of directions of fixed points for some mapping defined by help of a finite matrix A. In this paper we note that statement (1) does not hold for infinite matrices and prove a theorem generalizing properly (1) to the case of infinite matrices. Essentially, both proofs in [1] and in [3] could be, with some nontrivial changes, applied to give the desired generalization. The difficulty in generalizing the proof given in [3] consists i.a. in the fact that for an infinite matrix $\sum_{j} a_{ij}$ (or $\sum_{i} a_{ij}$) is not always finite. The idea of our proof is similar to that of [1] except that (2) is not used and that Brouwer's theorem is replaced by the theorem of Schauder (see [2]). In the sequel a matrix $A = (a_{ij})$ with $a_{ij} > 0$ will be called a positive matrix and a diagonal matrix with positive diagonal elements will be called a positive diagonal matrix. Finally $\delta_{ij} = 0$, $i \neq j$; 1, i = j, will denote the delta of Kronecker.

- 2. Before generalizing (1) to the case of infinite matrices let us note that
- (3) if $A = (a_{ij})$ is infinite with $a_{ij} = 1$ for $i, j = 0, 1, 2, \cdots$ then positive diagonal matrices D_1 and D_2 for which $T = D_1 A D_2$ is doubly stochastic do not exist.

Received by the editors September 11, 1967.

¹ This research was supported by the U. S. Air Force Grant AF-AFOSR 396-63, monitored by the Office of Scientific Research.

Indeed, if $D_1 = (\delta_{ij}p_i)$ and

$$D_2 = (\delta_{ij}q_j), \quad p_i > 0, \quad q_j > 0, \quad i, j = 0, 1, 2, \cdots$$

then for a doubly stochastic matrix $T = D_1 A D_2$ one has $t_{ij} = p_i q_j$ and $p_i = p_j$ for all $i, j = 0, 1, \cdots$, which is impossible.

We show now, that

(4) if $A = (a_{ij})$ with $a_{ij} = 1$ for all $i, j = 0, 1, \cdots$ and if there exist positive diagonal matrices $D_1 = (\delta_{ij}p_i)$ and $D_2 = (\delta_{ij}q_j)$ such that for $T = D_1AD_2 = (t_{ij})$ one has $\sum_j t_{ij} = \alpha_i$ and $\sum_i t_{ij} = \beta_j$, $i, j = 0, 1, \cdots$, then $\sum_{i=0}^{\infty} \alpha_i = \sum_{j=0}^{\infty} \beta_j < \infty$.

Indeed, condition $\sum_{j=0}^{\infty} t_{0j} = \alpha_0$ i.e. $p_0 \sum_{0}^{\infty} q_j = \alpha_0$ implies $\sum_{0}^{\infty} q_j < \infty$ and similarly $\sum_{0}^{\infty} p_i < \infty$. But then $(\sum_{0}^{\infty} p_i)(\sum_{0}^{\infty} q_j) = \sum_{0}^{\infty} \alpha_i = \sum_{0}^{\infty} \beta_j < \infty$.

Property (4) justifies the assumption $\sum_{0}^{\infty} \alpha_{i} = \sum_{0}^{\infty} \beta_{j} < \infty$ made in the following

THEOREM. Let $A = (a_{ij})_{i,j=0,1,\ldots}$ be an infinite positive matrix such that

- (a) there exists a constant M with $a_{ij} \leq M$ and
- (b) there exists a column (say the 0th column) and constants L_0 and M_0 such that for every $i, k = 0, 1, \cdots$ one has $a_{i0} \leq M_0 a_{ik}$ and $a_{ik} \leq L_0 a_{i0}$. Let further $\{\alpha_i\}$ and $\{\beta_j\}$ be sequences of positive numbers such that $\sum_{0}^{\infty} \alpha_i = \sum_{0}^{\infty} \beta_j < \infty$.

Then there exist positive diagonal matrices D_1 and D_2 such that for $T = D_1 A D_2 = (t_{ij})$ one has

(c)
$$\sum_{j} t_{ij} = \alpha_i$$
 and $\sum_{i} t_{ij} = \beta_j$, $i, j = 0, 1, \cdots$.

PROOF. Putting $N_0=1$ and $N_i=N\geq 1$ for $i\geq 1$ and multiplying A on the right by the matrix $D=(\delta_{ij}N_i)$ one can by choosing N sufficiently large obtain by (b) that, for the matrix $B=AD=(b_{ij})$,

(d) $b_{i0} \leq b_{ik}$ and $b_{i0} \leq (\beta_0 / \sum_{k \geq 1} \beta_k) b_{ik}$ holds for every $i, k = 0, 1, \dots, k \neq 0$.

It suffices obviously to find positive diagonal matrices P and Q such that $T = PBQ = (t_{ij})$ satisfies (c) (then $D_1 = P$ and $D_2 = DQ$). Now consider the equations

- (e₁) $u_i \sum_j b_{ij} x'_j = \alpha_i$,
- (e₂) $x_k \sum_{i} b_{ik} u_i = \beta_k, i, k = 0, 1, \cdots$

Expressing x_k in terms of x_i' we get

(f) $x_k = \beta_k / f_k(\{x_i'\})$, where $f_k(\{x_i'\}) = \sum_{i \ge 0} (\alpha_i b_{ik} / \sum_{j \ge 0} b_{ij} x_j')$. Evidently, if one finds a sequence $\{x_i'\}$ with $x_i' > 0$ such that in

(f) $x_k = x_k'$ for every $k \ge 0$, then calculating u_i from (e₁) and putting $P = (\delta_{ij}u_i)$ and $Q = (\delta_{ij}x_j)$ we have the desired matrices P and Q. In other words one looks for any fixed point $x = \{x_k\}_{k=0,1,\ldots}, x_k > 0$ of the mapping defined by (f). To get such a fixed point let us denote

 $\xi_k = x_k'/x_0'$ and $\eta_k = x_k/x_0$, $k = 1, 2, \cdots$, (we call $\{\xi_k\}$ and $\{\eta_k\}$ "directions").

Then by (f) one has

(g)
$$\eta_k = \frac{\beta_k}{\beta_0} \frac{g_0(\{\xi_j\})}{g_k(\{\xi_j\})}, \text{ where } g_k(\{\xi_j\}) = \sum_{i \ge 0} \frac{\alpha_i b_{ik}}{b_{i0} + \sum_{i \ge 1} b_{ij} \xi_j}.$$

Let us confine ourselves to $\xi_j \ge 0$ such that $\sum_{j\ge 1} \xi_j \le 1$, i.e. such that the point $x=(\xi_1,\,\xi_2,\,\cdots)$ belongs to the intersection $C\cap S$ of the cone $C=\{x=(\xi_1,\,\xi_2,\,\cdots);\,\xi_i\ge 0,\,x\in l\}$ in the Banach space l with the unit ball S of this space. Since $\sum \alpha_i < \infty$ we obtain by (a) that η_k exists for all $k=1,\,2,\,\cdots$ and obviously by (b) $\eta_k>0$. By (d) it follows that $\eta_k\le \beta_k/\beta_0$ and that $\sum_{k=1}^\infty \eta_k\le 1$.

Thus, by $\sum \beta_k < \infty$, formula (g) defines a continuous mapping F of $C \cap S$ into a compact subset of $C \cap S$. By the fixed point theorem of Schauder (see [2]) there exists a point $\bar{x} = (\bar{\xi}_1, \bar{\xi}_2, \cdots)$ such that $F(\bar{x}) = \bar{x}$. This point is an invariant direction of the mapping F. Take as in [1] any point (x'_0, x'_1, \cdots) on this direction with $x'_0 > 0$. Then $x_j = \theta x'_j, j = 0, 1, \cdots$, and putting x'_j into (e₁) we obtain the sequence $\{u_i\}_{i=0,1,\dots}$ Then by (e₁) and (e₂) we have

$$\sum_{i} u_{i} \sum_{j} b_{ij} x'_{j} = \sum_{j} \alpha_{i} = \sum_{j} \beta_{i} = \theta \sum_{j} u_{i} \sum_{j} b_{ij} x'_{j}.$$

Thus $\theta = 1$ and the sequences $\{u_i\}$ and $\{x_j\}$ satisfy both (e₁) and (e₂). The theorem is proved.

REMARKS. Let us note that in case of a finite positive matrix $A = (a_{ij})$ all the assumptions of the Theorem hold. Finally let us note that if $A = (a_{ij})_{i,j=0,1,...}$ is infinite and $a_{ij} = 1/2^{j+1}$, $i, j=0, 1, 2, \cdots$, then A is obviously a stochastic matrix but the argument applied in (3) shows that positive diagonal matrices D_1 and D_2 for which $T = D_1 A D_2$ is doubly stochastic do not exist.

REFERENCES

- 1. M. V. Menon, Reduction of a matrix with positive elements to a doubly stochastic matrix, Proc. Amer. Math. Soc. 18 (1967), 244-247.
- 2. J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 21 (1930), 171-180.
- 3. R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist. 35 (1964), 876-879.
- 4. L. Welch, Unpublished report of the Institute of Defense Analysis, Princeton, N. J.

TECHNION HAIFA, ISRAEL AND CORNELL UNIVERSITY

 $^{^2}$ *l* denotes the Banach space of all sequences $x = (\xi_1, \xi_2, \cdots)$ with ξ_i real and $\sum |\xi_i| < \infty$.