ELLIPTICITY AND REGULARITY FOR PERIODIC NONLINEAR EQUATIONS

ROBERT A. ADAMS

The composition of two strongly elliptic linear operators with suitably differentiable coefficients is also strongly elliptic. This fact has been used [3, pp. 178–181] to yield a particularly simple proof of the regularity of weak solutions of periodic strongly elliptic linear equations. In this paper we prove a similar regularity theorem for periodic nonlinear equations under the assumption of strong ellipticity for the composition of the given nonlinear operator with certain linear operators.

Let A be a nonlinear differential operator of order 2m given by

(1)
$$Au(x) = \sum_{|\alpha| \le m} D^{\alpha} a_{\alpha}(x, \xi(u)(x))$$

where $\xi = (\xi_{\alpha})_{|\alpha| \leq m}$ and $\xi_{\alpha}(u) \equiv D^{\alpha}u$. Here, as usual, $x = (x_1, \dots, x_n)$; $\alpha = (\alpha_1, \dots, \alpha_n)$; $|\alpha| = \alpha_1 + \dots + \alpha_n$; $D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}$, the α_j being nonnegative integers and $D_j = i^{-1} \partial/\partial x_j$, $i^2 = -1$. Denote by P the class of all functions on R_n periodic with period unity in each variable. We assume throughout that $a_{\alpha}(\cdot, \xi) \in P$. If Q denotes a cube of unit edge with edges parallel to the coordinate axes in R_n we define the standard Dirichlet form for A:

$$a(u, v) = \sum_{|\alpha| \le m} \int_{Q} a_{\alpha}(x, \xi(u)(x)) \overline{D^{\alpha}v(x)} dx, \quad u, v \in P.$$

Let H_m denote the Hilbert space obtained by completing in the topology generated by the inner product

$$[u, v]_m = \sum_{|\alpha| \le m} \int_Q D^{\alpha} u(x) \overline{D^{\alpha} v(x)} dx$$

the class $P \cap C^{\infty}(R_n)$ of all possibly complex-valued functions which are periodic with period unity in each coordinate and infinitely differentiable on R_n . We denote $\|u\|_m = (u, u)^{1/2}$. The dual of H_m with respect to the L_2 inner product $[u, v]_0$ is denoted H_{-m} . Properties of these spaces are discussed in [1, pp. 165-169]. If $f \in H_k$, then $D^{\alpha}f \in H_{k-|\alpha|}$ for any distribution derivative D^{α} . Given $f \in H_k$, $k \ge -m$, u is said to be a periodic weak solution of the equation Au = f if $u \in H_m$ and for each $v \in H_m$

Received by the editors September 19, 1967.

$$a(u, v) = \langle f, v \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the pairing between H_{-m} and H_m .

The operator A will be called *elliptic of class* E_m if the following three conditions are satisfied:

(i) For each $r \ge 0$ there exists a number g(r) such that for all u, $v \in H_m$

$$| a(u, v) | \leq g(||u||_m)||v||_m.$$

- (ii) If $u_k \rightarrow u$ in H_m , then $a(u_k, v) \rightarrow a(u, v)$ for all v in H_m .
- (iii) There exists a constant c>0 such that for all $u, v \in H_m$

$$|a(u, u - v) - a(v, u - v)| \ge c||u - v||_{m}^{2}$$

For a given integer $k \ge 0$, A will be called *elliptic of class* $E_{m,k}$ if for each integer j with $0 \le j \le k$ the operator $A_j = L^j A$ of order 2m + 2j is elliptic of class E_{m+j} where $L = 1 - \Delta = 1 + \sum_{j=1}^{n} D_j^2$. (Note that if the coefficients a_{α} are sufficiently differentiable then A_j is an operator formally of type (1). If A is linear with C^{∞} coefficients and is elliptic of class E_m , then it is also elliptic of class $E_{m,\infty}$.)

The existence of a periodic weak solution of Au = f for $f \in H_k$, $k \ge -m$ follows immediately for A elliptic of class E_m from the nonlinear extension of the Lax-Milgram theorem due to Zarantonello and Browder [2]. Specifically, (i) implies that there exists an operator T mapping H_m into itself such that $a(u, v) = [Tu, v]_m$ for all $u, v \in H_m$; (ii) shows that T is demicontinuous (continuous from the strong to the weak topology of H_m) and (iii) shows, by the above-mentioned theorem, that T is one-to-one onto H_m and has a continuous inverse. Also $|\langle f, v \rangle| \le ||f||_{-m} ||v||_m$ so that $\langle f, v \rangle = [f_0, v]_m$ where $f_0 \in H_m$ is the projection of f onto H_m . A weak solution of Au = f is given by $u = T^{-1}f_0$.

Of more interest is the following regularity

THEOREM. Let $u \in H_m$ be a periodic weak solution of Au = f where $f \in H_k$, $k \ge -m$. If there exists a constant λ such that the operator $A' = A + \lambda L^{m-1}$ is elliptic of class $E_{m,m+k}$, then $u \in H_{2m+k}$.

PROOF. It is sufficient to prove the theorem for the case $\lambda=0$ for, assuming this already done and noting that if u is a periodic weak solution of Au=f it is also a periodic weak solution of A'u=f' where $f'=f+\lambda L^{m-1}u$, we have $f'\in H_p$ where $p=\min(k,-m+2)$. Since A' satisfies the condition of the theorem with $\lambda=0$ it follows that $u\in H_{2m+p}$, whence $f'\in H_q$ where $q=\min(k,-m+4)$. Hence $u\in H_{2m+q}$. Continuing in this way we obtain $u\in H_{2m+k}$.

We suppose therefore that $\lambda = 0$ and A is elliptic of class $E_{m,m+k}$. As in the existence argument above there exist, for $0 \le j \le m+k$, demicontinuous, continuously invertible operators T_j mapping H_{m+j} one-to-one onto itself such that for all $u, v \in H_{m+j}$

$$a_i(u, v) = [T_i u, v]_{m+i}$$

where a_j is the Dirichlet form of A_j . Similarly, by the Lax-Milgram theorem, there exist homeomorphisms V_j mapping H_{m+j} onto itself such that for all $u, v \in H_{m+j}$

$$l_i(u, v) = [V_i u, v]_{m+i}$$

where l_j is the Dirichlet form for L^{m+i} . Hence, for $0 \le j \le m+k$, $S_j = v_j^{-1}T_j$ is a one-to-one mapping of H_{m+j} onto itself which satisfies for all $u, v \in H_{m+j}$

$$a_j(u, v) = l_j(S_j u, v).$$

On the other hand, by integrating by parts and using periodicity, we see that for all ϕ , $\psi \in P \cap C^{\infty}(R_n)$,

$$a_{j}(\phi, \psi) = a_{0}(\phi, L^{j}\psi) = l_{0}(S_{0}\phi, L^{j}\psi) = l_{j}(S_{0}\phi, \psi),$$

whence $w = S_j \phi - S_0 \phi$ is a periodic weak solution of the linear equation $L^{m+j}w = 0$ and as such is the null element of H_{m+j} . By completion S_j is the restriction of S_0 to H_{m+j} and so S_0 maps H_{m+j} one-to-one onto itself.

Now since u is a periodic weak solution of Au = f, $f \in H_k$, it follows that $v = S_0u$ is a periodic weak solution of the linear equation $L^mv = f$ which by Friedrichs' theorem (periodic case) [3, pp. 178-181] belongs to H_{2m+k} . Since S_0 maps H_{2m+k} one-to-one onto itself $u \in H_{2m+k}$ as required.

REFERENCES

- 1. L. Bers, F. John and M. Schechter, Partial differential equations, Interscience, New York, 1964.
- 2. F. Browder, Remarks on nonlinear functional equations, Proc. Nat. Acad. Sci. U. S. A. 51 (1964), 985-989.
 - 3. K. Yosida, Functional analysis, Academic Press, New York, 1965.

THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER