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The composition of two strongly elliptic linear operators with

suitably differentiable coefficients is also strongly elliptic. This fact

has been used [3, pp. 178-181] to yield a particularly simple proof of

the regularity of weak solutions of periodic strongly elliptic linear

equations. In this paper we prove a similar regularity theorem for

periodic nonlinear equations under the assumption of strong ellip-

ticity for the composition of the given nonlinear operator with certain

linear operators.

Let A be a nonlinear differential operator of order 2m given by

(1) Au(x) =   S  D"aa(x, £(«)(*))
|ot|sm

where £= (£Q)i„|Sm and ^a(u) = Dau. Here, as usual, x = (xi, • • -,x„);

a=(ai, • ■ ■ , a„); |a| =«i+ • • • +an; Da = D"i ■ ■ • D„n, the a,-

being nonnegative integers and Dj = i~1 d/dx¡, i2= —1. Denote by P

the class of all functions on Rn periodic with period unity in each

variable. We assume throughout that aa(-, £)£P. If Q denotes a

cube of unit edge with edges parallel to the coordinate axes in Rn we

define the standard Dirichlet form for A :

a(u, v) =   S    I   aa(x, £(u)(x))Dav(x)dx,        u, v C P-
|a|sm   J Q

Let Hm denote the Hubert space obtained by completing in the

topology generated by the inner product

[u, v]m =   S Dau(x)Dav(x)dx

\a\s,m   J Q

the class PC\CX(R„) of all possibly complex-valued functions which

are periodic with period unity in each coordinate and infinitely differ-

entiable on R„. We denote ||M||m=(M, u)112. The dual of Hm with re-

spect to the Li inner product [u, v]o is denoted H-m. Properties of

these spaces are discussed in [l, pp. 165-169]. If fCHk, then

D"fCHk~\a\ for any distribution derivative Da. Given fCHk, k^—m,

u is said to be a periodic weak solution of the equation Au =f iiuCHm

and for each vCHm
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a(u, v) = (f, v),

where ( •, • ) denotes the pairing between H_m and Hm.

The operator A will be called elliptic of class Em if the following

three conditions are satisfied:

(i) For each r^O there exists a number g(r) such that for all u,

vCHm

| a(u, v) |   S¡ f(||«||m)||9||m.

(ii) If uk—>u in Hm, then a(uk, v)—*a(u, v) for all v in Hm.

(Hi) There exists a constant c>0 such that for all u, vCHm

| a(u, u — v) — a(v, u — v) |   ^ c||m — v\\m.

For a given integer & = 0, A will be called elliptic of class Em,k ii for

each integer j with OSjúk the operator A¡ = L'A of order 2m+2j is

elliptic of class £„+, where L = 1 —A = 1 + S"-i tf- (Note that if the
coefficients aa are sufficiently differentiable then A¡ is an operator

formally of type (1). If A is linear with C°° coefficients and is elliptic

of class Em, then it is also elliptic of class Em¡x.)

The existence of a periodic weak solution of Au=f for fCHk,

k^—m follows immediately for A elliptic of class Em from the non-

linear extension of the Lax-Milgram theorem due to Zarantonello and

Browder [2]. Specifically, (i) implies that there exists an operator T

mapping Hm into itself such that a(u, v) = [Tu, v]m for all u, vCHm;

(ii) shows that T is demicontinuous (continuous from the strong to

the weak topology of Hm) and (iii) shows, by the above-mentioned

theorem, that T is one-to-one onto Hm and has a continuous inverse.

Also | (/, o)| ^ 11/ll-mlMU so that (f, v)= [fo, v]m where foCHm is the
projection of / onto Hm. A weak solution of Au=f is given by u

= T-ifo.
Of more interest is the following regularity

Theorem. Let uCHm be a periodic weak solution of Au=f where

fCHk, k=—m. If there exists a constant X such that the operator

A' = A+\Lm~1 is elliptic of class Em,m+k, then uCHim+k.

Proof. It is sufficient to prove the theorem for the case X = 0 for,

assuming this already done and noting that if m is a periodic weak

solution of Au =/ it is also a periodic weak solution of A'u =f where

f'=f+\Lm-1u, we have f'CHp where p = min(k, —m+2). Since A'

satisfies the condition of the theorem with X = 0 it follows that

uCH2m+p, whence f'CHq where ç = min(&, —m+4). Hence uCHim+q-

Continuing in this way we obtain uCHtm+k-
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We suppose therefore that X = 0 and A is elliptic of class Em-m+k. As

in the existence argument above there exist, for O^j^m+k, demi-

continuous, continuously invertible operators T¡ mapping Hm+j one-

to-one onto itself such that for all u, vCLTm+j

aj(u, v) = [TjU, v]m+j,

where a¡ is the Dirichlet form of A¡. Similarly, by the Lax-Milgram

theorem, there exist homeomorphisms V¡ mapping Hm+j onto itself

such that for all u, vCHm+j

lj(u, v) = [VjU, v]m+j

where l¡ is the Dirichlet form for Lm+i. Hence, for O^j^m + k, Sj

= vJ1Tj is a one-to-one mapping of Hm+j onto itself which satisfies for

all m, vCHm+i

a¡(u, v) = lj(SjU, v).

On the other hand, by integrating by parts and using periodicity, we

see that for all <j>, \pCPr\C°°(Rn),

aj(<f>, 4>) = a0(<t>, V-p) = lo(So4>, Lty) = h(So<b, f),

whence w = Sj4> — Soqb is a periodic weak solution of the linear equation

Lm+>w = 0 and as such is the null element of Hm+j- By completion S,

is the restriction of So to Hm+j and so 50 maps Hm+i one-to-one onto

itself.

Now since m is a periodic weak solution of Au=f,fCHk, it follows

that v = S0u is a periodic weak solution of the linear equation L™o =/

which by Friedrichs' theorem (periodic case) [3, pp. 178-181] belongs

to Him+k. Since So maps Him+k one-to-one onto itself uCH2m+k as

required.
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