
ON A THEOREM OF FEJÉR AND RIESZ

F. R. KEOGH

1. In what follows we suppose that r> 1 and that AT is a constant,

depending only on r, the value of which is not usually the same at

each occurrence. Let U(6) denote a real function measurable over

(—T, it), let

Pip, 8) = il- p2)[il - p)2 + 4p sin2 \8]-\        0 g P < 1,

and let

l  r*

2tcJ—k
m(p)=-       P(p,e)U(6)d9.

Pip, 8) is the Poisson kernel and uip) =u(j>, 0) is the value at the point

(p, 0) of a function uip, 8) in polar coordinates which is harmonic

inside the unit disc and has boundary value t7(0) on the unit circle.

We begin by giving a new 'real variable' proof of the following

theorem of Fejér-Riesz type. This is similar to a proof given by

du Plessis [3] but it differs in a way which leads to a new analogue in

three dimensions. Before du Plessis' paper appeared, the only proof

available was of a 'complex variable' nature and based on the Fejér-

Riesz inequality ft \f(r)\dr<\f_l \f(e»)\d8 [l].

Theorem 1.

(i) f \u(p)YdP = Ar fr    I U(e)\'d0.
JO J  -IT

The proof is based on the use of an inequality theorem (see, for

example, [2, p. 229, Theorem 319]) which we state as a lemma.

Lemma. If f(x) is nonnegative, K(x, y) nonnegative and homogeneous

of degree —1 and Jj¡ K(x, l)x~llrdx = k, then

/»oc//»oc \r y*oc

(2) J    (J     K(x,y)f(x)dxUy^k'j     (f(x))'dx.

Proof of Theorem 1. For 0 ^p < 1, since Pip, 8) >0, we have

u(p)\  S— f   P(p,0)\ U(0)\dO,
2-n-J _„
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so it is enough to prove the theorem under the assumption that

Ui8) = 0. We may further assume that £7(0) is an even function of 8

and prove (what is then equivalent to (1)) that

(3) f (-f Pip,0)Uio)do)rdp£Ar f (U(B)Yde,
J o \ir J a / Jo

for on replacing U(8) in (3) by the even function U(8) + U(—8), and

using the Holder inequality (a+b)r^2'~1iar+br) for a^=0, b^O, we

obtain

dpf   | uip) I'dfl -   f  \- f'p(p,$)(U(0) + U(-6))d6
Jo Jo   L2xJ o

¿Arf   (U(8) + U(-8)Ydp
J o

g Ar r2^[(U(8)Y + (U(-8)Y]d8
J 0

= Arf   (U(d)Yd8.
J —,r

Dividing the range of integration with respect to p in (3) into the

two intervals (0, §), (§, 1), we first consider integration over (0, J).

Since Pip, 8) ^ (1 +p)/(l —p) we have, using Holder's inequality,

j    (—f Pip,e)ui8)d8\dP èj   ^(^—^\r(jKuie)dd\dP

(4) = Ar(f uie)de\r

^ Arf   (U(B)Yd0.
J 0

Next, defining

2(1 - p)
(5) Pi(p, 8) =

((i - pT- + e2)

for the interval (J, 1), since \8^8/ir over (0, w), we have

2(1 - p) 1 2(1 - p) 1
PÍP, 8) Ú-= — 7r2-< — T2PiiP. 8),

(1 - p)2 + 202/x2       2      i,r2(l - p)2 + e2       2 '

and so
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(6)

f (- f Pip,e)uie)de)dP
J 1/2\X  Jo /

= Ar f ( — f Piip,e)Ui8)dd\dP.
J 1/2 \T  J 0 /1/2

With fix) = Uix) for0gxgx,/(x)=0forx>7r, and

Kix, y) = (2/rr)y/(x2 + y2),

the functions/(x), A(x, y) satisfy the conditions of the lemma (with

k = cosec §7r(l — 1/r)). On replacing x by 8, y by 1 —p, (2) and (5) give

(—I   Piip,e)ui8)de)dpú        =Ar\   iUie)Ydd,
1/2\X Jo / J -n Jo

and finally (4) and combination of (6) and (7) give the inequality (3).

This completes the proof of the theorem.

2. When analogues of Theorem 1 for functions harmonic in the

unit sphere are considered there are two possibilities. Let (p, 8, cb)

denote spherical polar coordinates, t/(0, <p) a real function measurable

for O^0^7t, —Tr^4> — TT, and let

Qip, 8) = (1 - P2)[(l - p)2 + 4p sin2 id]-3'2 sin 8,

uip) = j  (j   Ui8,cb)dÀQip,8)d8.

Here Qip, 8) is the three-dimensional Poisson kernel and uip)

= uip, 0, 0) is the value at the point (p, 0, 0) of a function uip, 8, <p)

harmonic inside the unit sphere and with boundary values Uiß, <f>) on

the surface. The possibilities are

(8) fifi "M N)¿P = Ar f    f    I Ui8, <t>) \r sin 6d<bdd.

and

/il rt  V      p  X

I uip, 8, <f>) \rpd<pd8 = AT \      I     I Ui8, <¡>) \r sin 8d<pdd.
0 J o    J — T

In both inequalities the right-hand side is the integral of | t/(0, 0)|r

over the surface of the unit sphere. In the first inequality, the left-

hand side consists of two integrations of w(p, 8, <p) along a radius, in

the second inequality the left-hand side is the integral of uip, 8, <f>)

over a diametral plane. Both of these analogues are, in fact, valid and
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they are particular cases of a general theorem of du Plessis [3] con-

cerning functions in n dimensions, du Plessis' proof of this general

theorem is indirect and depends on half-space analogues of Theorem

1 [4J. In this note we give a direct proof of a stronger version of (8)

which does not seem to be deducible using du Plessis' argument.

Theorem 2.

(9)      J   (1 - p) I uip) \'dp ̂  Arj (j    I U(8, 4>) I d<p\ sin 8d8.

The left-hand side here is identical to the left-hand side of (8) and,

by Holder's inequality,

fifi U(8, <b) I d<p J sin Odd ¿ Ar f    f    | U(8, <S>) |r sin 8dd>dd,

so that (9) is a stronger inequality than (8).

Proof. Arguing as before, it is enough to prove the theorem under

the assumption that 11(8, <b) = 0.

We divide the range of integration with respect to p as before, and

first consider integration over (0, J). Since

Qip, 0)g(l+P)(l-p)-2 sin0

we have, using Holder's inequality,

' 1/2

/.

(1-p)(m(p))^p

= /o      (1 ~ P) Ë/  ( /    U(e' *)¿*) Ö(P' 6)d9\ TÍP

1/2 (l + pY
(1 - p)(4r)-

(1 - P)2'

(10) •    f (j    U(8,<p)d<p\siii8de\dP

= A\   \   \\   U(8,<p)d<p\sin8d8~\

= Ar\    Í   j     U(8, <p)ddA sinr 8d8

g Ar I   il    U(8, <p)d4>J sin 8d8.
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Next, defining

(11) R(p, 8) = 2(1 - pV+^-^Kl - pY + 82]-3'2

for the interval (£, 1), since sinoco and sin ^8^8/tt over (0, if), we

have

Q(p,8) Ú 2(1 - p)[(l - pY + 282/tt2]-3'2 sin 8

= 2-1'V3(l - p)[|tt2(1 - pY + d2]-3'2 sin 8

= 2-1'V3(l - p)[(l - pY + 82]-3'2 sin 8

= 2-3'V3(l - p)-1'' sin1"" 8 Rip, 8),

and so

f  (l - p)(uip)Ydp
J 1/2

(12) = J*   (1_p)[¿/(/   Ui8,4>)d<p\QÍp,8)dd]dp

g Ar f f   Rip, 8)( f   f/(0, ^Jsin^öl ¿a.

Defining /(x) =sin1/rx/lx Z7(x, $)<&£ for O^x^x, f(x)=0 for x>7r,

and

A(x, y) = (2x)-1x1-1"-y1+1"-(x2 + y2)-^2,

the functions/(x), Kix, y) satisfy the conditions of the lemma (with

^ = i7r-3/2r(i_i/r)r(l/2 + l/0). On replacing x by 8, y by 1-p, (2)

and (11) give

(13)

f   \—f  RÍP, 8)(j   U(8, 4>)d*\ sin1" B~\ dp

= AT f  ( f   U(8, <t>)ddj smddd.

Combination of (12) and (13) now gives

(14)        f    (1 -p)(uip)Ydp = Ar f ( f   U(0,4>)d*¡ sin Bdd,
J    111 J 0   \ J — ir t

and addition of (10) and (14) yields the desired inequality (9).
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