PRODUCT SOLUTIONS FOR SIMPLE GAMES. II

T. PARTHASARATHY

1. Introduction. In this paper we continue our study of the investigation of product solutions for compound simple games. By a compound simple game we mean one that is built up out of two or more component simple games. The concept of compound simple games is apparently due to Shapley. Shapley [2] and the author [1], [4], [5] have obtained product solutions for compound simple games by combining the solutions of the component games. During this process we impose that the subsolutions will have to satisfy a certain semimonotonic ∂ -monotonic property. In this paper we obtain a new class of product solutions for the game $H \otimes K$ with $H = V_n \otimes B_1$, where V_n denotes the homogeneous weighted majority game $[1, 1, 1, \dots, 1, n-2]_h$ consisting of n players, B_1 denotes the 1-person pure bargaining game and K any arbitrary simple game.

2. Definitions and notations.

SIMPLE GAMES. We shall denote a simple game by the symbol, $\Gamma(P, W)$, where P is a finite set (players) and W is a collection of subsets of P (the winning coalitions). We demand that $P \in W$ and the empty set is not an element of W.

Let $\Gamma(P_1, W_1)$ and $\Gamma(P_2, W_2)$ be two simple games with $P_1 \cap P_2 = \emptyset$ and let $P = P_1 \cup P_2$. Then the product $\Gamma(P_1, W_1) \otimes \Gamma(P_2, W_2)$ (for simplicity we will write $P_1 \otimes P_2$) is defined as the game $\Gamma(P, W)$ where W consists of all $S \subseteq P$ such that $S \cap P_i \in W_i$ for i = 1, 2. By an imputation we mean a real nonnegative vector x such that $\sum_{i \in P} x_i = 1$. A_P will stand for the collection of all imputations. We recall that a solution of the game $\Gamma(P, W)$ is a set X of imputations such that $X = A_P - \text{dom } X$ where dom X denotes the set of all $y \in A_P$ such that for some $x \in X$, the set $\{i \mid x_i > y_i\}$ is an element of W. The notations dom₁ and dom₂ will be used for domination with respect to special classes W_1 and W_2 .

DEFINITION. A parameterized family of sets of imputations $Y(\alpha): 0 \le \alpha \le 1$ will be called semimonotonic if for every α , β , x such that $0 \le \alpha \le \beta \le 1$ and $x \in Y(\beta)$ there exists $y \in Y(\alpha)$ with $\alpha y \le \beta x$.

DEFINITION. A semimonotonic family is called ∂ -monotonic $(0 \le \partial \le 1)$ if for every α , β , γ such that $\beta \le \alpha \le \beta \le 1$ and $\gamma \in Y(\alpha)$ there exists $\gamma \in Y(\beta)$ with $\gamma \in Y(\beta)$.

Received by the editors November 30, 1966.

We call a 0-monotonic family fully monotonic. [In general, ∂ will stand for any positive number with $0 < \partial < 1$ unless otherwise stated.] Let $P = P_1 \cup P_2$ and let

$$A_{P_i} = \left\{ x : x \in A_P, \sum_{j \in P_i} x_j = 1 \right\}$$
 for $i = 1, 2$.

DEFINITION. Let X be a solution to the product of simple games $P_1 \otimes P_2$. Call X a product solution if the following conditions are met.

- (i) There exists a semimonotonic family $\{Y_i(\alpha): 0 \le \alpha \le 1\}$ such that $Y_i(\alpha)$ are solutions to P_i for all α except $\alpha = 1$ where i = 1, 2.
- (ii) $X = \bigcup_{0 \le \alpha \le 1} X_1(\alpha) \times_{\alpha} X_2(1-\alpha)$ where $X_i(\alpha) = A_{P_i} \text{dom}_i Y_i(\alpha)$ and $X_1(\alpha) \times_{\alpha} X_2(1-\alpha) = \{z: z = \alpha x_1 + (1-\alpha)x_2 \text{ for some } x_1 \in X_1(\alpha), x_2 \in X_2(1-\alpha) \}.$

DEFINITION. Let X be any subset of A_P . Call X an externally stable set if $X \cup \text{dom } X = A_P$. Call X an internally stable set if $X \cap \text{dom } X = \emptyset$. [Here of course we assume $\Gamma(P, W)$ to be a simple game.] Call X a solution if X is both externally stable and internally stable. V_n will always stand for the homogeneous weighted majority game $[1, \dots, 1, n-2]_h$ consisting of n players. H will stand for any game of the form $V_n \otimes B_1$ where B_1 denotes the 1-person pure bargaining game. K will denote an arbitrary simple game.

- 3. We now write down the solutions of V_n which are completely known [3, pp. 472-495]. They are classified in three groups.
 - I. The finite set

$$\left(\frac{1}{n-1}, \frac{1}{n-1}, \cdots, \frac{1}{n-1}, 0\right), \quad \left(\frac{1}{n-1}, 0, 0, 0, 0, \frac{n-2}{n-1}\right),$$

$$\left(0, \frac{1}{n-1}, \cdots, 0, \frac{n-2}{n-1}\right), \cdots, \quad \left(0, 0, 0, 0, \cdots, \frac{1}{n-1}, \frac{n-2}{n-1}\right).$$

II. Let C be any constant with $0 \le C < 1 - 1/(n-1)$

$$\{(x_1, x_2, \cdots, x_{n-1}, C) \mid x_i \geq 0, \sum x_i = 1 - C\}$$
.

- III. Let S_* be any nonempty proper subset of $\{1, 2, \dots, n-1\}$. Let a_1, a_2, \dots, a_{n-1} be nonnegative real numbers which satisfy the following properties:
 - (i) $\sum_{1}^{n-1} a_i = 1$,
- (ii) $a_* = \min_{1 \le i \le n-1} a_i$, then $a_i = a_*$ for all $i \in S_*$ and $a_i > a_*$ for $i \in \{1, 2, \dots, n-1\} S_*$.

As a consequence of (i) and (ii) we have $a_* < 1/(n-1)$. Let p be

the number of elements in S_* and let $c=1-a_*$, $c^*=1-pa_*$. The following set consisting of (1) and (2) constitutes a solution to V_n .

(1) For $i \in S_*$,

$$\mathbf{a}^i = \left\{a_1^i, a_2^i, \cdots, a_n^i\right\}$$

where

$$a_j^i = a_i = a_*$$
 for $j = i$,
 $= c$ for $j = n$,
 $= 0$ otherwise.

(2)
$$a(y) = \{a_1(y), a_2(y), \dots, a_n(y)\}$$
 where $0 \le y \le c^*$;
 $a_i(y) = a_i = a_*$ for $i \in S_*$,
 $= y$ for $i = n$,
 $= a_i(y)$ for $i \in \{1, 2, \dots, n-1\} - S_*$,

where $a_i(y)$ for $i \in \{1, 2, \dots, n-1\} - S_*$ are functions whose domain of definition is $[0, c^*]$. They also have the following properties

$$a_i(0) = a_i, \qquad a_i(c^*) = 0$$

and

$$|a_i(y_2) - a_i(y_1)| \le |y_2 - y_1|.$$

I, II and III exhaust all possible solutions to V_n .

REMARK 1. It is not hard to check that no semimonotonic family drawn from this list can include representatives from more than one of the three categories I-III, hence the only possible variation within such a family is in the value of C if the family is from the second group or the variation will be in choosing S_* , the nonnegative real numbers a_1, a_2, \dots, a_{n-1} and the functions $a_i(y)$ for $i \in \{1, 2, \dots, n-1\}$ $-S_*$ if the family is from the third group.

REMARK 2. Setting $a_* = 1/(n-1)$ in III or II produces internally stable sets (not solutions) that are monotonically related to the solutions nearby. Using this fact we will give an example of a solution for compound simple games which is not fully monotonic in the last section. [Recall the fact that a set X is internally stable if $X \cap \text{dom } X = \phi$.]

4. We will now state the theorems.

THEOREM 1. Let $\{X_1(\alpha): 0 \le \alpha \le 1\}$ be any ∂ -monotonic family of product solutions to the game $H = V_n \otimes B_1$ except that $X_1(1)$ need not be externally stable. Then

$$X = \bigcup_{0 \le \alpha \le 1} Z_1(\alpha) \times Z_2(1-\alpha)$$

is a solution for $H \otimes K$ where K is any arbitrary simple game and $Z_1(\alpha) = A_{n+1} - \operatorname{dom}_1 X_1(\alpha)$ and $Z_2(1-\alpha) \equiv Z_2$ is any solution of K.

THEOREM 2. Let $Y_1(\alpha)$ be ∂ -monotonic solutions to V_n . Then

$$X = \bigcup_{0 \le \alpha \le 1} Z_1(\alpha) \times Z_2(1 - \alpha)$$

is a solution for $V_n \otimes K$ where $Z_1(\alpha) = A_n - \text{dom}_1 \ Y_1(1)$ and $Z_2(\alpha) \equiv Z_2$ is any solution of K.

REMARK 3. External stability of Theorems 1 and 2 can be established as in the case of Theorem 5 of Shapley (see [2, pp. 282–283]) or as in [1] since the proof depends only on the semimonotonic property of $X_i(\alpha)$ and the external stability of $Z_i(\alpha)$.

REMARK 4. Theorem 2 does not say much. This is because every solution that satisfies the conditions of Theorem 2 in fact has the property of full monotonicity even in the 'not required' range. However, using Theorem 1, we can construct solutions which will be ∂ -monotonic but not fully monotonic.

PROOF OF THEOREM 1. We will now show that X is internally stable. We will give the proof when $H = V_4 \otimes B_1$. The same proof with some minor modifications applies when $H = V_n \otimes B_1$ for general n.

Case 1. Suppose for infinitely many m, with $\alpha^{(m)} \uparrow 1$, $X_1(\alpha^{(m)})^{\P}$ is of the form

$$X_{1}(\alpha^{m}) = \left\{ \beta(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0), 1 - \beta \right\}$$

$$\cup \left\{ \beta(\frac{1}{3}, 0, 0, \frac{2}{3}), 1 - \beta \right\}$$

$$\cup \left\{ \beta(0, \frac{1}{3}, 0, \frac{2}{3}), 1 - \beta \right\}$$

$$\cup \left\{ \beta(0, 0, \frac{1}{3}, \frac{2}{3}), 1 - \beta \right\} \quad \text{where } \beta \text{ runs over from } 0 \text{ to } 1.$$

This representation is possible since we are assuming that the $X_1(\alpha)$'s are product solutions. In this case, since the family is ∂ -monotonic and since all but a finite number of $\alpha^{(m)}$'s are greater than ∂ it follows that $X_1(1)$ is also of the same form as $X_1(\alpha^{(m)})$'s. In other words $X_1(1)$ is a solution. Hence internal stability follows via Theorem 5 of Shapley [2].

Case 2. Let $\alpha^{(m)} \uparrow 1$ and

$$X_{1}(\alpha^{(m)}) = \left\{ \beta(x_{1}, x_{2}, x_{3}, C_{\beta}^{(m)}), 1 - \beta \mid 0 \leq \beta < 1, \\ x_{i} \geq 0, \sum x_{i} = 1 - C_{\beta}^{(m)} \right\} \cup Y_{1}^{\alpha^{m}}(1),$$

where $Y_1^{\alpha^m}(1)$ need not be an internally stable set for V_4 and $0 \le C_{\beta}^m < 2/3$. Consider the set N_{β} where

$$N_{\beta} = \{x \mid x = \beta(x_1, x_2, x_3, C_{\beta}^0), 1 - \beta \text{ and there exists a sequence } \}$$

$$x_{mK} \in X_1(\alpha^{mK})$$
 such that $\alpha^{mK}x_{mK} \uparrow x$.

It is easy to check that N_{β} is nonempty.

It is not hard to check that the closure of $X_1(1)$ —written as $\overline{X}_1(1)$ —contains the set N_{β} . This is a consequence of the assumption that the family $X_1(\alpha)$ is ∂ -monotonic.

At this point we would like to make another observation, namely $\overline{X}_1(1)$ together with $\{X_1(\alpha): 0 \le \alpha < 1\}$ is a semimonotonic family and hence $\overline{X}_1(1)$ is also internally stable.

If $C^0_{\beta} < 2/3$ for every β , $\bigcup N_{\beta} = \overline{X}_1(1)$ and $\overline{X}_1(1)$ is a solution for H, internal stability follows by the theorem of Shapley.

Let $C_{\beta} = 2/3$ for at least one β . To complete the proof of internal stability in his case it is sufficient to establish that there does not exist any vector $x \in X_1(\alpha)$ with αx dominating y where $y \in Z_1(1) - \overline{X}_1(1)$. Let if possible,

$$\alpha x > y \text{ via } \overline{145} \text{ with } y \in Z_1(1) - \overline{X}_1(1).$$

 $[\alpha x > y \text{ via } \overline{145} \text{ means, } \alpha x_i > y_i \forall i = 1, 4, 5.]$

Let $y = (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \epsilon_5)$ and

$$X(\alpha) = [\beta(x_1, x_2, x_3, C_{\beta}), 1 - \beta].$$

[For the sake of simplicity we will not write the possible values of β and x_1, x_2, x_3 .]

Choose any β' with $\alpha(1-\beta) > 1-\beta' > \epsilon_5$ where

$$\alpha[\beta(x_1', x_2', x_3', C_{\beta}), 1 - \beta] > y \text{ via } \overline{145}.$$

Let $N_{\beta'} = [\beta'(x_1, x_2, x_3, C_{\beta'}^0), 1-\beta']$. If $\beta'C_{\beta'}^0 \le \epsilon_4$, then there exist $w \in N_{\beta'}$ such that $\alpha x > w$ via $\overline{145}$. This will mean $\alpha x > w \ge \alpha z$ via $\overline{145}$, contradicting the internal stability of $X_1(\alpha)$.

Hence we will assume $\beta'C_{\beta}^0 > \epsilon_4$. This means $\beta'(1 - C_{\beta'}^0)$ is less than or equal to ϵ_1 , ϵ_2 and ϵ_3 , otherwise there will be an element in $N_{\beta'}$ dominating y, thereby contradicting the assumption regarding y. Now a suitable $x^1 \in X(\alpha)$ can be obtained with

$$\alpha x' > \{\beta'(1 - C_{\beta'}^{0}, 0, 0, C_{\beta'}^{0}), 1 - \beta'\} \text{ via } \overline{1235}$$

which will once again contradict the internal stability of $X_1(\alpha)$. Similar contradictions can be reached if $\alpha x > y$ via $\overline{245}$ or $\overline{345}$ or $\overline{1235}$.

Thus the proof of internal stability is complete in the case.

Case 3. Let $\alpha^{(m)} \uparrow 1$ and

$$X_{1}(\alpha^{(m)}) = \left[\beta(a_{\beta}^{(m)}, a_{\beta}^{(m)}, a_{\beta}^{(m)}(y), y), 1 - \beta\right] \cup Y_{1}^{\alpha^{(m)}}(1)$$

where $0 \le \beta < 1$, $Y_1^{\alpha^m}(1)$ need not be an internally stable set for V_4 and y runs from 0 to $1 - 2a_{\beta}^{(m)}$ for every fixed β . Also note that $0 \le a_{\beta}^{(m)} < 1/3$.

Let (w.l.g.) $a_{\beta}^{m} \rightarrow a_{\beta}^{0}$. Consider now the following set N_{β}

$$N_{\beta} = \{x \mid x = \{\beta(a_{\beta}^{0}, a_{\beta}^{0}, a_{\beta}^{0}(y), y), 1 - \beta\}$$

and there exists $x^{m_k} \in X_1^{\alpha_{m_k}}$ such that $\alpha^{m_k} x^{m_k} \uparrow x$

For every β , $\{a_{\beta}^{m}(y)\}$ is a collection of equicontinuous and uniformly bounded functions defined over the compact set

$$A = \bigcap_{m=1}^{\infty} A_{\beta}^{m} \text{ where } A_{\beta}^{m} = [0, 1 - 2a_{\beta}^{m}].$$

It is trivial to check that this intersection is precisely the interval $[0, 1-2a_{\beta}^{0}]$. So we can assert without loss of generality $a^{m}(y) \rightarrow a_{\beta}^{0}(y)$ uniformly over A. If for every β , $a_{\beta}^{0} < 1/3$, we are through. So we will assume $Z_{1}(1) - \overline{X}_{1}(1) \neq \emptyset$. We will now prove that there exists no vector $x \in X(\alpha)$ with αx dominating y where $y \in Z_{1}(1) - \overline{X}_{1}(1)$. Let if possible

 $\alpha x > y = (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \epsilon_5)$ via say $\overline{1235}$

i.e.

$$\alpha[\beta(x_1, x_2, x_3, x_4), 1 - \beta] > y.$$

Let $X_1(\alpha)$ be of the form

$$\{\beta(a_{\beta}, a_{\beta}, a_{\beta}(t), t), 1 - \beta\}.$$

Choose and fix one β' such that $\alpha(1-\beta) > 1-\beta' > \epsilon_5$

$$N_{\beta'} = \{ \beta'(a_{\beta'}^0, a_{\beta'}^0, a_{\beta'}^0(t), t), 1 - \beta' \}.$$

If $\beta' a_{\beta'}^0 \leq \epsilon_1$ and ϵ_2 then internal stability of $X_1(\alpha)$ will be contradicted. Hence, we will assume $\beta' a_{\beta'}^0 > \epsilon_1$. This will mean $\beta' (1 - 2a_{\beta}^0) \leq \epsilon_4$ otherwise there will be an element $w \in N_{\beta'}$ such that w will dominate y thereby contradicting the assumption regarding y. If $\beta' a_{\beta'}^0 > \epsilon_2$ and $\beta' (1 - 2a_{\beta'}^0) > \epsilon_3$, then once again there will be a contradiction regarding the assumption that $y \in Z_1(1) - \overline{X}_1(1)$.

If $\beta' a_{\beta}^0 \leq \epsilon_2$ then we can find $u, u' \in X_1(\alpha), w \in N_{\beta'}$ such that $\alpha u > w \geq \alpha u'$ via 245 i.e. u > u' via 245 and this leads to a contradiction.

If $\beta'(1-2a_{\beta'}^0) \leq \epsilon_3$, we can find $u, u' \in X(\alpha)$ with u > u' via $\overline{345}$ and hence a contradiction.

If $X_1(\alpha)$ is of the form

$$\{\beta(a_{\beta}, a_{\beta}^{1}(t), a_{\beta}^{2}(t), t), 1 - \beta\},\$$

then also one can show the impossibility of αx dominating y with $y \in Z_1(1) - \overline{X}_1(1)$. Similar contradictions can be reached if N_{β} , is of the form

$$N_{\beta'} = \left\{ \beta'(a_{\beta'}^0, a_{\beta'}^1(t), a_{\beta'}^2(t), t), 1 - \beta' \right\}.$$

Thus the proof of internal stability of X is complete.

REMARK 5. During the course of the proof we have omitted certain minor details. For example if $X_1(\alpha') = \{\beta(x_1, x_2, x_3, c_\beta), 1 - \beta\}$ then for all α with $(2\alpha'/3) < \alpha \le \alpha'$, $X(\alpha)$ will also be of the same form as $X(\alpha')$. This is a consequence of the fact that the $X(\alpha)$'s form a semimonotonic family and are product solutions.

REMARK 6. Theorem 1 includes Theorem 3.2 in [1] where we have obtained product solutions for the game $H \otimes K$, $H = V_3 \otimes B_1$ and K is any simple game.

5. The following example shows that solutions to product simple games can be found which need not have the property of full monotonicity. Consider the game $H = V_4 \otimes B_1$ and define for $0 \le \alpha \le 3/4$,

$$X(\alpha) = \bigcup_{0 \le \beta \le 1} Y(\beta)$$

where

$$Y(\beta) = \left\{ (\beta x_1, \beta x_2, \beta x_3, 2\beta^{3/2}/3, 1 - \beta) \middle| x_i \ge 0, \sum x_i = 1 - 2\beta^{1/2}/3 \right\}$$

for $0 \le \beta < 1$,

$$Y(1) = \left\{ (x_1, x_2, x_3, \frac{2}{3}, 0) \middle| x_i \ge 0, \sum x_i = \frac{1}{3} \right\} \cup \left\{ \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0 \right\}.$$

For $3/4 < \alpha \leq \alpha_0$, where α_0 is so chosen that

$$\alpha_0 \left(1 - \frac{7}{6} \frac{1}{1 + \alpha_0} \right) = \frac{1}{3}$$

define

$$X(\alpha) = \bigcup_{0 \le \beta \le 1} Y(\beta),$$

$$Y(\beta) = \left\{ \left(\beta x_1, \, \beta x_2, \, \beta x_3, \, \frac{7}{6} \, \frac{\beta^{3/2}}{1+\alpha}, \, 1-\beta \right) \middle| x_i \ge 0,$$

$$\sum x_i = 1 - \frac{7}{6} \, \frac{\beta^{1/2}}{1+\alpha} \right\}.$$

For $\alpha_0 < \alpha \le 1$ define

$$X(\alpha) = \bigcup_{0 \le \beta \le 1} \left\{ \left(\beta x_1, \, \beta x_2, \, \beta x_3, \left(1 - \frac{1}{3\alpha} \right) \beta^{3/2}, \, 1 - \beta \right) \, \middle| \, x_i \ge 0, \right.$$

$$\sum x_i = 1 - \left(1 - \frac{1}{3\alpha} \right) \beta^{1/2} \right\}.$$

Now it is not hard to check that the family $X(\alpha)$ is semimonotonic and that each $X(\alpha)$ is a product solution to the game H except X(1). X(1) is not externally stable because,

$$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0) \notin X(1) \cup \text{dom } X(1).$$

If $X^1(1) = X(1) \cup (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0)$, then $X^1(1)$ is a solution to H. But $X^1(1)$ together with $\{X(\alpha): 0 \le \alpha < 1\}$ is not semimonotonic, for, corresponding to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0) \in X^1(1)$ there exists no element $x \in X(\alpha)$ for any $\alpha > 3/4$ with $\alpha x \le (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0)$.

Further the family $X(\alpha): 0 \le \alpha \le 1$ is not fully monotonic because corresponding to the element $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0) \in X(3/4)$ there exists no element $y \in X(1)$ with the property that $y \ge (3/4)(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0)$. It is not hard to check that conditions of Theorem 1 are satisfied for this family $X(\alpha)$. Hence this family can be used to produce product solutions for the game $H \otimes K$. This is the example promised at the end of §3.

ACKNOWLEDGEMENT. The author is greatly indebted to the referee for several useful suggestions.

REFERENCES

- 1. T. Parthasarathy, Minimax theorems and product solutions, Ph.D. Thesis, Indian Statistical Institute, Calcutta, 1966.
- 2. L. S. Shapley, Solutions of compound simple games, Annals of Math. Studies No. 52, Princeton Univ. Press, Princeton, N. J., 1964, pp. 267-305.
- 3. J. von Neumann and Oskar Morgenstern, *Theory of games and economic behavior*, Princeton Univ. Press, Princeton, N. J., 1944; Wiley, New York, 1964, pp. 472-495.
- 4. T. Parthasarathy, A note on compound simple games, Proc. Amer. Math. Soc., 17 (1966), 1334.
- 5. ——, Product solutions for simple games. I, Technical report, Mimeographed notes, Indian Statistical Institute, Calcutta, 1966.

Indian Statistical Institute, Calcutta and University of California, Berkeley