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0. Introduction. In this paper it is shown that every equational

class of lattices which can be defined by a finite number of identities

can be characterized (among the class of algebras with two binary

operations) by means of two identities. In particular, the class of all

lattices can be characterized by means of two identities and this

solves a problem raised in [ll] by Ju. I. Sorkin. In the proof of the

main theorem we make use of the known fact that in presence of the

lattice axioms the validity of a finite set of lattice identities is equiva-

lent to that of a single one.

1. A binary system (L, *) is called a semilattice if the binary

operation * is idempotent, commutative and associative. A system

(L, +, • ) is called a lattice if both + and • are semilattice operations

in L such that they are connected by the two absorption laws a+ab

= a, a(a+b) =a.

Lemma. A binary system (L, *) satisfying the identities x*x=x and

(x*y)*z = (y*z)*x is a semilattice.

This result is proved in [6].

By an equational class of lattices (sometimes a variety of lattices)

we mean a class of lattices satisfying certain further identities. Thus

distributive lattices and modular lattices form equational classes of

lattices. Let W be an equational class of lattices defined by a finite set

of identities. By what has been said in the introduction, we may as-

sume that this equational class of lattices is singled out (among the

class of all lattices) by a single identity, say

i'-f(yu yt, ■ ■ •. y») = g(yu yt, ■ • ■, y»)

where/ and g are some words in the variables yi, y2, ■ ■ ■ , yn and the

lattice operations + and •. If we want to obtain the equational class

of all lattices we need only think of 7 as the trivial identity y=y.

Theorem. A binary system (L, +, •) with two binary operations +

and ■ is a lattice (with -f- and • as lattice operations) in which the iden-

tity I is true if and only if the following two identities hold in it:
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(1) (xf)z + (((a + u)u + v) + w) = (gz)x + ((v + w) + u),

(2) xy + y = y.

Proof. The 'only if part being obvious we need prove only the 'if

part. Let the identities (1) and (2) be true in (L, +, •). Put v = u in

(1). By (2) we get (xf)z+(u+w) = (gz)x + ((u+w)+u). Replacing z

by K+w and x by (u+w) -\-u in the above and applying (2) we get

(3) u + w = (w + w) + u.

Putting u=xw in the above and using (2) we have

(4) w = w + xw.

Now put w — yu in (3). By (4) we have

(5) u = u + u.

Put v = w = (a+u)u in (1) and apply (2) in the R.H.S. We get, by (5),

(xf)z + (a + u)u = (gz)x + u.

Replacing z by (a-\-u)u and x by u in the above and using (2) we get

(6) (a + «)w = m.

By (5) and (6) we have

(7) mm = M.

Now (1) read as

(1') (xf)z + ((u + v) + w) = (gz)x + ((v + w) + w).

Putting z= (M-f-iO+w and x= (v-\-w)+u in the above we get, by (2),

(8) (u + v) + w = (f + «0 + M.

From (5), (8) and the lemma we conclude that + is a semilattice

operation in L.

Put u=v=w=(xf)z in (1'). We get (xf)z=(gz)x + (xf)z.

Similarly, by putting u=v = w= (gz)x in (1'), we have (xf)z + (gz)x

= (gz)x, and hence by the commutative law for +, we get, for all

x, z, yi, y2, ■ ■ ■ , yn in L,

(9) (xf)z = (gz)x.

In particular, putting yi=3'2= • • • =yn=y in the above and using

the idempotent laws (5) and (7) we get, for all x, y, z in L,

(10) (xy)z = (yz)x.
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From (7), (10) and the lemma we conclude that • is also a semilattice

operation.

Thus both + and • are semilattice operations and by (2) and (6)

we have got both the absorption laws. In other words, the system

{L, -f-, •) isa lattice.

Now, putting x = z=/+g in (9) and using the lattice properties of

+ and •, we getf = g. Thus the system (L, +, • ) is a lattice in which

the identity/(yi, y2, • • • , y»)=g(yi, yi, • • ■ , yn) holds. This com-

pletes the proof of the theorem.

Corollary. The equational class of all lattices, in particular, is

defined by the two identities:

(1*)       (xy)z + (((a + u)u + v) + w) = (yz)x + ((» + w) + u),

(2) xy + y = y.

This solves Sorkin's problem.

2. Remarks. The above definition for lattices is simpler than that

of Sorkin [ll] in every sense of the word. Thus while Sorkin's axiom

system contains three identities, one of which is of length twenty-three

with nine variables (see p. 49 of [9]), our axiom system contains two

identities, the longest identity of which is of length only fourteen

with just seven variables.

The above theorem generalizes the results of M. Sholander [lO]

and M. Kolibiar [4] and provides a uniform method to find a set of

two identities defining any equational class of lattices which satisfies

the conditions of the theorem; it may, however, be possible to define

such a class by two laws in fewer variables or by shorter laws than (1)

and (2). Thus, for distributive lattices, for example, (1) is of length

nineteen with nine variables. But as proved by M. Sholander in [10],

they can be characterized by two identities the largest identity of

which is of length only seven with just three variables.

This paper is inspired by a review of [7] and by a similar theorem

for groups proved by G. Higman and B. H. Neumann, where it is

shown that nearly every variety of groups can be defined by a single

identity as a subvariety of groupoids. By contrast, D. H. Potts has

shown in [8] that a single law will not suffice to define semilattices.

It is not known whether lattices can be characterized by a single

identity using only those operations which are derivable from the

lattice operations.2 A related problem of viewing certain equational

classes as part of some other equational classes of a richer algebraic

2 This was recently solved by R. McKenzie (Added in proof November 20, 1968).
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system and characterizations of the former classes by a single identity

in this bigger set up, etc., are treated by G. Grätzer and B. H.

Neumann respectively in their forthcoming papers [2] and [5]. Also,

we do not know whether there is any equational class of lattices which

cannot be defined by a finite set of identities.8

I take this opportunity to express my sincere thanks to Professor

M. Venkataraman with whom I had stimulating discussions while

preparing this paper. My thanks'are also due to Professor G. Grätzer

for his interest in this paper.
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* Kirby Baker and R. McKenzie have given affirmative answers to this question

(Added in proof November 20, 1968).


