REMARK ON THE PURITY OF THE BRANCH LOCUS

ERNST KUNZ

The purpose of the following note is to give a simple proof for the purity of the branch locus for local rings of characteristic p > 0.

Let R be a regular local ring of characteristic p>0, K its quotient field, k its residue class field. Let L be a finite separable extension of K and S be the integral closure of R in L. It is well known that S is a finitely generated R-module and that $S=\bigcap_{h(\mathfrak{P})=1}S_{\mathfrak{P}}$, where \mathfrak{P} runs over all prime ideals of S of height $h(\mathfrak{P})=1$.

LEMMA 1. R is a faithfully flat R^p -module.

This follows from the commutative diagram

$$R \to \hat{R} = k[[x_1, \cdots, x_n]]$$

$$\uparrow \qquad \uparrow$$

$$R^p \to \hat{R}^p = k^p[[x_1^p, \cdots, x_n^p]],$$

where \hat{R} is the completion of R, $\hat{R} = k[[x_1, \dots x_n]]$, a representation of \hat{R} as a ring of formal power series over k, and from the fact that the extensions $R \to \hat{R}$, $R^p \to \hat{R}^p$ and $k^p[[x_1^p, \dots x_n^p] \to k[[x_1, \dots x_n]]$ are faithfully flat.

REMARK. If R is a commutative ring, p an integer, T a multiplicatively closed subset of R, then $R_T = R_{T}p$.

LEMMA 2. $R[S^p] \cong R \otimes_{R^p} S^p$.

Consider the sequence

$$R \otimes_{R^p} S^p \to R \otimes_{R^p} L^p \to K \otimes_{K^p} L^p \to K[L^p] \subseteq L.$$

The first arrow is an injection by Lemma 1, the second is an isomorphism, as $R \otimes_{R^p} L^p \cong (R \otimes_{R^p} K^p) \otimes_{K^p} L^p$ and $K \cong R \otimes_{R^p} K^p$ by the remark. The third arrow is an isomorphism, as L is separable over K. As $R[S^p]$ is the image of $R \otimes_{R^p} S^p$ in $K[L^p]$, the lemma follows.

LEMMA 3. $R[S^p] = \bigcap_{h(q)=1} R[S^p]_q$, where q runs over all prime ideals of $R[S^p]$ of height 1.

For each q there is exactly one prime ideal \mathfrak{P} of S with $\mathfrak{P} \cap R[S^p] = \mathfrak{q}$, namely

$$\mathfrak{P} = \sqrt{\mathfrak{q}} = \{x \in S \mid x^p \in \mathfrak{q}\},\$$

Received by the editors September 21, 1967.

and $h(\mathfrak{P}) = h(\mathfrak{q})$. By the remark and by Lemma 2 we have $R[S^p]_{\mathfrak{q}} \cong R \otimes_{R^p} (S_{\mathfrak{P}})^p$. Let

$$y \in \bigcap_{k(\mathfrak{P})=1} R \otimes_{R^p} (S_{\mathfrak{P}})^p \subseteq R \otimes_{R^p} L^p$$
.

Then

$$y = \sum_{i=1}^{m} r_i \otimes l_i \qquad (r_i \in R, l_i \in L^p).$$

Since S^p is an integrally closed noetherian domain, the l_i $(i=1 \cdot \cdot \cdot m)$ are contained in almost all of the $(S_{\mathfrak{P}})^p$. Let $\mathfrak{P}_1, \cdot \cdot \cdot, \mathfrak{P}_r$ be the exceptional prime ideals. Then

$$y \in R \otimes_{R^p} \left(\bigcap_{\mathfrak{P} \neq \mathfrak{P}_i} (S_{\mathfrak{P}})^p \right) \cap \bigcap_{i=1}^r R \otimes_{R^p} (S_{\mathfrak{P}_i})^p.$$

Since R is flat over R^p the tensor product commutes with finite intersections (Bourbaki, *Éléments de mathématique*. Algèbre commutative, Hermann, Paris, Chapter I, §2, Proposition 6). Thus

$$y \in R \otimes_{R^p} \left(\bigcap_{h(\mathfrak{P})=1} (S_{\mathfrak{P}})^p \right) = R \otimes_{R^p} S^p.$$

LEMMA 4. Let $\mathfrak{P} \subset \operatorname{Spec}(S)$, $\mathfrak{P} \cap R[S^p] = \mathfrak{q}$. $S_{\mathfrak{P}}$ is unramified over R if and only if $S_{\mathfrak{P}} = R[S^p]_{\mathfrak{q}}$.

Let $\mathfrak{P} \cap R = \mathfrak{g}$ and $k_{\mathfrak{P}}$, $k_{\mathfrak{q}}$, $k_{\mathfrak{g}}$ be the residue class fields of $S_{\mathfrak{P}}$, $R[S^p]_{\mathfrak{q}}$ and $R_{\mathfrak{g}}$ respectively. Then $k_{\mathfrak{q}} = k_{\mathfrak{g}}[k_{\mathfrak{P}}^p]$.

If $S_{\mathfrak{P}}$ is unramified over R, then it is also unramified over $R[S^p]$. It follows that $k_{\mathfrak{P}} = k_{\mathfrak{q}} = k_{\mathfrak{g}} [k_{\mathfrak{P}}^p]$, as $k_{\mathfrak{P}}$ is at the same time separable and purely inseparable over $k_{\mathfrak{q}}$. $S_{\mathfrak{P}}$ is a finitely generated $R[S^p]_{\mathfrak{q}}$ -module by the above remark and $S_{\mathfrak{P}} = R[S^p]_{\mathfrak{q}} + \mathfrak{q} S_{\mathfrak{P}}$. By the lemma of Nakayama, we have $S_{\mathfrak{P}} = R[S^p]_{\mathfrak{q}}$.

Conversely, let $S_{\mathfrak{P}} = R[S^p]_{\mathfrak{q}}$. Then $k_{\mathfrak{P}} = k_{\mathfrak{q}} = k_{\mathfrak{g}}[k_{\mathfrak{P}}^p]$. Since $k_{\mathfrak{P}}$ is finite over $k_{\mathfrak{g}}$ it follows that $k_{\mathfrak{P}}$ is separable over $k_{\mathfrak{g}}$ and $k_{\mathfrak{P}} \cong k_{\mathfrak{q}} \otimes_{(k_{\mathfrak{q}})^p} (k_{\mathfrak{P}})^p$. The ideal $i = \mathfrak{g}R_{\mathfrak{q}} \otimes (S_{\mathfrak{P}})^p + R_{\mathfrak{q}} \otimes (\mathfrak{P}S_{\mathfrak{P}})^p$ of

$$R_{\mathfrak{a}} \otimes_{(R_{\mathfrak{a}})^p} (S_{\mathfrak{B}})^p \cong R[S^p]_{\mathfrak{a}} = S_{\mathfrak{B}}$$

is the maximal ideal of this ring, as $R_{\mathfrak{g}} \otimes_{(R_{\mathfrak{g}})^p} (S_{\mathfrak{P}})^p / i \cong k_{\mathfrak{g}} \otimes_{(k_{\mathfrak{g}})^p} (k_{\mathfrak{P}})^p$ is a field, thus $\mathfrak{P}S_{\mathfrak{P}} = \mathfrak{g}S_{\mathfrak{P}} + \mathfrak{P}^pS_{\mathfrak{P}}$. From the lemma of Nakayama, we have $\mathfrak{P}S_{\mathfrak{P}} = \mathfrak{g}S_{\mathfrak{P}}$ and $S_{\mathfrak{P}}$ is unramified over R.

Theorem. Let $S_{\mathfrak{P}}$ be unramified over R for all prime ideals \mathfrak{P} of S

380 ERNST KUNZ

with height 1. Then S is unramified over R.1

Let $\mathfrak{P} \subseteq \operatorname{Spec}(S)$ be a prime ideal of height 1 and $\mathfrak{q} = \mathfrak{P} \cap R[S^p]$. Then by Lemma 4 we have $S_{\mathfrak{P}} = R[S^p]_{\mathfrak{q}}$. Lemma 3 gives us $S = \bigcap_{h(\mathfrak{P})=1} S_{\mathfrak{P}} = \bigcap_{h(\mathfrak{q})=1} R[S^p]_{\mathfrak{q}} = R[S^p]$. Now by Lemma 4, S is unramified over R. It is easy to extend Lemma 4 to the following criterion: Let $R \subseteq S$ be noetherian local rings with maximal ideals $m \subseteq M$ and residue class fields $k \subseteq K$. If char k = p > 0, if K is finite over k and S is a finitely generated $R[S^p]$ -module, then S is unramified over R if and only if $S = R[S^p]$.

University of Heidelberg, West Germany

¹ ADDED IN PROOF. It is sufficient to assume that R is a local domain, which is flat over R^p . However, in a forthcoming paper (Amer. J. Math.) the author will show that R is then a regular local ring.