A NEW PROOF THAT METRIC SPACES ARE PARACOMPACT

MARY ELLEN RUDIN

By using a well-ordered open cover, there is a simple proof of the nice theorem [1] that every metric space is paracompact.

Assume that X is a metric space and that $\{C_{\alpha}\}$ is an open cover of X indexed by ordinals. Let ρ be a metric on X and let S(x, r) be the open sphere with center x and radius r. For each positive integer n define $D_{\alpha n}$ (by induction on n) to be the union of all spheres $S(x, 2^{-n})$ such that:

- (1) α is the smallest ordinal with $x \in C_{\alpha}$,
- (2) $x \oplus D_{\beta j}$ if j < n,
- (3) $S(x, 3 \cdot 2^{-n}) \subset C_{\alpha}$.

Then $\{D_{\alpha n}\}$ is a locally finite refinement of $\{C_{\alpha}\}$ which covers X; hence X is paracompact.

Certainly $\{D_{\alpha n}\}$ refines $\{C_{\alpha}\}$. To see that $\{D_{\alpha n}\}$ covers X, observe that, for $x \in X$, there is a smallest ordinal α such that $x \in C_{\alpha}$, and an n so large that (3) holds. Then, by (2), $x \in D_{\beta j}$ for some $j \leq n$.

To prove that $\{D_{\alpha n}\}$ is locally finite, assume an $x \in X$ and let α be the smallest ordinal such that $x \in D_{\alpha n}$ for some n, and choose j so that $S(x, 2^{-j}) \subset D_{\alpha n}$. The proof consists of showing that:

- (a) if $i \ge n+j$, $S(x, 2^{-n-j})$ intersects no $D_{\beta i}$,
- (b) if i < n+j, $S(x, 2^{-n-j})$ intersects $D_{\beta i}$ for at most one β .

PROOF OF (a). Since i > n, by (2), every one of the spheres of radius 2^{-i} used in the definition of $D_{\beta i}$ has its center y outside of $D_{\alpha n}$. And since $S(x, 2^{-j}) \subset D_{\alpha n}$, $\rho(x, y) \ge 2^{-j}$. But $i \ge j+1$ and $n+j \ge j+1$, so $S(x, 2^{-n-j}) \cap S(y, 2^{-i}) = \emptyset$.

PROOF OF (b). Suppose $p \in D_{\beta i}$, $q \in D_{\gamma i}$, and $\beta < \gamma$; we want to show that $\rho(p, q) > 2^{-n-j+1}$. There are points y and z such that $p \in S(y, 2^{-i}) \subset D_{\beta i}$, $q \in S(z, 2^{-i}) \subset D_{\gamma i}$; and, by (3), $S(y, 3 \cdot 2^{-i}) \subset C_{\beta}$ but, by (2), $z \notin C_{\beta}$. So $\rho(y, z) \ge 3 \cdot 2^{-i}$ and $\rho(p, q) > 2^{-i} \ge 2^{-n-j+1}$.

BIBLIOGRAPHY

1. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982.

University of Wisconsin

Received by the editors January 30, 1968.