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We propose to investigate the following boundary value problem:

(1) wxx+wyy = 0,0<x<ir,0<y<<x>,

(2) w{0,y)=fi(y), 0^y<cc,

(3) w(ir, y)=ft(y), Ogy<°o,
(4) -wv(x,0)=G[x;w(x,0)],0<x<ir,

where/1,/2 are real-valued continuous functions on [O, w [vanishing

at infinity, and G is a nonlinear real-valued function of two real vari-

ables satisfying the following conditions:

G[x; u] is strictly decreasing in u, G[x; c] =0 where c is a constant

such that

(5) c^supsupx(fi(x),f2(x)),
(6) G[x; u] is continuous in x and u jointly.

Physically, w is the temperature, and the condition (4) with G satis-

fying (5) and (6) is a generalization of Newton's law of cooling;

—wv(x, 0) =l(co—w(x, 0)), land c0 being constants.

Mann and Blackburn [l ] investigated a particular case of the fore-

going problem corresponding to/: = 0=/2, c = l, and G independent

of the first argument x. The reason we consider this problem again is

two-fold: first, the argument given in [l] in the proof of the existence

theorem (loc. cit. Theorem 3) does not directly carry over to the

present more general case, and second, we wish to present a method

for constructing the solution in certain particular cases, whereas the

authors in [l] were more concerned with existence theorems. Our

main tool is a fixed point theorem of H. Schaefer [2].

By a solution of the boundary value problem (l)-(6), we mean a

function w harmonic in the open strip, satisfying (2)-(6), continuous

in O^x^ir, 0^y<co, and vanishing at infinity. We postulate w to

be of the form

(7) w = wi+w2, where wu w2 are harmonic in the open strip, and

(8) wi(0, y)=wi(ir, y)=0, 0^y< 00,

(9) -wi,y(x, 0)=G[x; w(x;0)], 0<x<ir,

(10) w2(0,y)=fi(y),
(11) w2(ir, y)=f2(y),

(12) wtjx, 0)=0, 0<x<t.

By proceeding as in [l], one finds
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Wi(x, y)
l  r     l
-J    log-
V  J 0 1

1 — 2 exp(—y) cos(x — z) + exp( —v)

(13) ir J o        1 — 2 exp(—y) cos(x + z) + exp(—y)

•G[z;w(z;0)]az,       0<x<tt, 0<;y<oo,

We now seek an integral representation formula for w2. We use the

technique of Fourier transforms. Our operations with Fourier trans-

forms are purely formal. We are concerned with the final representa-

tion formula which will be justified for its sake. Let

(14)     }i(w) = — f  fi<S) cos wÇdÇ,       }2(w) = — f  f2(t) cos wtdt.
7T  t/ o T  J 0

Note that the possibility that these integrals diverge does not concern

us. Let

(A(w) exp(iwy — wx)

+ B(w) exp(iwy — w(w — x)))dw.

Then by (10) and (11), and formally using the Fourier inversion

formula, we get

/,  00

}i(w) cos wydw,
o

/I  00

f2(w) cos wydw.
o

Equating

»2(0, y) = fi(y),       w2(v, y) = f2(y),

gives

(18) A(w) + B(w) exp (—wir) =}i(w),

(19) A(w) exp(—wir) + B(w) =J2(w).

Hence

(20) A(w) = A(w)(]i(w) — f2(w) exp( — wt)),

(21) B(w) = A(w)(J2(w) -}i(w) exp(-WTr)),

where

(22) A(w) = (1 - exp(-2w))-1.
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In view of (15), (20), (21), we have

2
(23)        w2(x, y) = — f   (fi(t)D(x, y; f) +f2(£)E(x, y; t))dt,

ir J a

where

(24)

(25)

/, 00

A(w)(exp(—wx) — exp(—2wir + wx))
o

• cos wy cos iffdf,

/>  00

A(w)(exp( —w(ît — x)) — exp(—w(ir + x)))
o

• cos wy cos wf áf.

Lemma 1. (i) w2 is harmonic in the open strip.

(ii) Umy-,oW2(x, y) exists for O^xsáir and defines a function con-

tinuous on [0, ir].

(iii) limv_o w2,y(x, y)=0, 0<x<7r.

(iv) limx-.o w2(x, y) =/i(y), linix^ w2(x, y) =/2(y).

Proof. The proof of (i), (ii), (iii) is straightforward. The proof of

(iv) proceeds by approximating the kernels D and E by the Poisson

kernel. Details are omitted.

In view of Lemma 1 and equation (13), the boundary value prob-

lem (l)-(6) reduces to the following integral equation

1   cT
(26) u(x) = — I    G[z; u(z)]K(x, z)dz + w2(x, 0),     0 g x â t,

IT J 0

where u(x) =wi(x, 0) and

1 — cos(x — z)
(27) K(x, z) = log •

1 — cos(x + z)

Define

1   CT
(28)        F«(x) = — I    G[z; u(z)]K(x, z)dz + w2(x, 0),

2ir J o
0 Ú x g

Then « is a solution of (26) if and only if « is a fixed point of T. In

the sequel, our arguments will be couched in the language of fixed

point theorems. Let E be the Banach space of continuous functions

on [0, jr]. Then it is clear that T takes E into E. It is also clear that

T is completely continuous, since the function log(l—cos(x±z)) is

integrable in z.
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Lemma 2. T has at most one fixed point.

The proof of this lemma proceeds exactly as in the proof of Theo-

rem 4 of [l].

Lemma 3. Let T\=\T, 0<Xgl. If u is a fixed point of T\, then

inf inf(fi(x),f2(x)) ^ug¡c.
s

Proof. Let

X   r *       1 — 2 exp(—y) cos(x — z) + exp(-y)
v (x, y) = — I     log-

it J o 1 — 2 exp(—y) cos(a; + z) + exp( —y)

•G[z;w(z, 0)] dz + Xw2(x, y).

Then, by Lemma 1,

limv(x,y) = Xfi(y),
x—>0

limt>(s,y) = X/2(y),

- lim— (*,y) = G[x,u(x)\.
v->o ay

To prove the double inequality of the lemma, we use the maxi-

mum modulus principle for harmonic functions.

(i) u is ^ c.

Suppose on the contrary that u(x)>c for some x. Let xm be such

that u(xm) =max u(x). Then G[xm; u(xm)] <0 by the definition of G,

since u(xm)>c. On the other hand, v is not constant. Hence, by the

maximum principle,

-y-l(v(xM, y) - v(xu, 0)) > 0,       y > 0.

Since  — vy(xM, Q)=G[xm, u(xm)], we have a contradiction. This

contradiction proves (i).

(ii) m is ^inf* inf (fi(x),f2(x)) = a.
Suppose on the contrary that for some x, we have u(x) <a. Let xm be

such that u(xm) = inf u(x). Then u(xm) =inf v(x, y) by the maximum

principle. The proof proceeds on the same lines as in part (i).

We now state our existence theorem.

Theorem 1. T has a unique fixed point u. Furthermore, a^u^c.

Proof. Suppose that T has no fixed point. Then by a theorem of

Schaefer [2], there exist a sequence (w„) of elements of E and a se-
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quence of real numbers 0<X„<1, such that

un = \nTu„,       ||w„|| -♦ 00.

But by Lemma 3, a^un^c. This contradiction proves that T has a

fixed point u, which is unique by Lemma 2. Furthermore, a^u^c,

by Lemma 3. Thus the theorem is proved.

Theorem 2. The boundary value problem (l)-(6) has a unique solu-

tion.

Proof. Each fixed point of the operator T gives rise to a solution

of the boundary value problem (l)-(6) in an obvious way. Hence by

Theorem 1, the given boundary value problem has a solution. Let

v(x, y), v'(x, y) be two solutions of the boundary value problem. Let

w(x, y)—v(x, y)—v'(x, y). Then w vanishes on the edges x = 0,

0^y<«>, and x = 7r, 0^y<°°. Using the maximum modulus prin-

ciple, and the properties of the function G[x, u(x)], we can prove

that w vanishes on the base O^x^x. Then, again by the maximum

modulus principle, w must be the null function. This proves the

theorem.

The problem of actually constructing the solution of the problem

is one of great interest. If T is a contraction, i.e., if ||Fm — Tu'\\

¿a\\u — u'\\, 0<a<l, then the fixed point of T can be obtained by

successive approximation. We shall show that even when T is only

nonexpansive, i.e., ||Fm — Tu'\\ ^ \\u—u'\\, the fixed point of T can

still be obtained by successive approximation.

Theorem 3. Let T be nonexpansive. Then the fixed point u of T can

be obtained by successive approximation. More precisely, let Tn=a„T,

0<«„<1.
Ifan—>1 and a¡¡—»0, then lim„ T%w = ufor any w in E.

Proof. By T„ we mean of course the Mth iterate of Tn. For each n,

Tn is a contraction, and hence has a fixed point u„, un = Tnun.

By Lemma 3, the sequence (un) is bounded, and, by the above

relation, is relatively compact. Hence (un) has a cluster value. Now,

each cluster value of (m„) is a fixed point of T. Since by Theorem 1, T

has a unique fixed point, it follows that (u„) has a unique cluster

value u. Since (a,) is relatively compact, (un) converges to u. Now, if

w is any element of E,

|| Tnw — un\\  = || tIw — TnUn\\

^ an\\w — m„||.

Since (u„) is bounded, the theorem follows.
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