A NONLINEAR STEADY STATE TEMPERATURE PROBLEM FOR A SEMI-INFINITE SLAB

DANG DINH ANG

We propose to investigate the following boundary value problem:

- (1) $w_{xx} + w_{yy} = 0$, $0 < x < \pi$, $0 < y < \infty$,
- (2) $w(0, y) = f_1(y), 0 \le y < \infty$,
- (3) $w(\pi, y) = f_2(y), 0 \le y < \infty$,
- (4) $-w_{\nu}(x, 0) = G[x; w(x, 0)], 0 < x < \pi$

where f_1 , f_2 are real-valued continuous functions on $[0, \infty]$ vanishing at infinity, and G is a nonlinear real-valued function of two real variables satisfying the following conditions:

G[x; u] is strictly decreasing in u, G[x; c] = 0 where c is a constant such that

- (5) $c \ge \sup \sup_{x} (f_1(x), f_2(x)),$
- (6) G[x; u] is continuous in x and u jointly.

Physically, w is the temperature, and the condition (4) with G satisfying (5) and (6) is a generalization of Newton's law of cooling; $-w_y(x, 0) = l(c_0 - w(x, 0)), l$ and c_0 being constants.

Mann and Blackburn [1] investigated a particular case of the foregoing problem corresponding to $f_1 = 0 = f_2$, c = 1, and G independent of the first argument x. The reason we consider this problem again is two-fold: first, the argument given in [1] in the proof of the existence theorem (loc. cit. Theorem 3) does not directly carry over to the present more general case, and second, we wish to present a method for constructing the solution in certain particular cases, whereas the authors in [1] were more concerned with existence theorems. Our main tool is a fixed point theorem of H. Schaefer [2].

By a solution of the boundary value problem (1)-(6), we mean a function w harmonic in the open strip, satisfying (2)-(6), continuous in $0 \le x \le \pi$, $0 \le y < \infty$, and vanishing at infinity. We postulate w to be of the form

- (7) $w = w_1 + w_2$, where w_1 , w_2 are harmonic in the open strip, and
- (8) $w_1(0, y) = w_1(\pi, y) = 0, 0 \le y < \infty$,
- (9) $-w_{1,y}(x, 0) = G[x; w(x; 0)], 0 < x < \pi,$
- (10) $w_2(0, y) = f_1(y)$,
- (11) $w_2(\pi, y) = f_2(y)$,
- (12) $w_{2,y}(x, 0) = 0, 0 < x < \pi.$

By proceeding as in [1], one finds

Received by the editors September 21, 1967.

(13)
$$w_1(x, y) = \frac{1}{\pi} \int_0^{\pi} \log \frac{1 - 2 \exp(-y) \cos(x - z) + \exp(-y)}{1 - 2 \exp(-y) \cos(x + z) + \exp(-y)} \cdot G[z; w(z; 0)] dz, \qquad 0 < x < \pi, \ 0 < y < \infty.$$

We now seek an integral representation formula for w_2 . We use the technique of Fourier transforms. Our operations with Fourier transforms are purely formal. We are concerned with the final representation formula which will be justified for its sake. Let

$$(14) \quad \hat{f}_1(w) = \frac{1}{\pi} \int_0^\infty f_1(\zeta) \cos w \zeta d\zeta, \quad \hat{f}_2(w) = \frac{1}{\pi} \int_0^\infty f_2(\zeta) \cos w \zeta d\zeta.$$

Note that the possibility that these integrals diverge does not concern us. Let

(15)
$$w_2(x, y) = \int_{-\infty}^{\infty} (A(w) \exp(iwy - wx) + B(w) \exp(iwy - w(\pi - x))) dw.$$

Then by (10) and (11), and formally using the Fourier inversion formula, we get

(16)
$$w_2(0, y) = 2 \int_0^\infty \hat{f}_1(w) \cos wy dw,$$

(17)
$$w_2(\pi, y) = 2 \int_0^\infty \hat{f}_2(w) \cos wy dw.$$

Equating

$$w_2(0, y) = f_1(y), \qquad w_2(\pi, y) = f_2(y),$$

gives

(18)
$$A(w) + B(w) \exp(-w\pi) = \hat{f}_1(w),$$

(19)
$$A(w) \exp(-w\pi) + B(w) = \hat{f}_2(w).$$

Hence

(20)
$$A(w) = \Delta(w)(\hat{f}_1(w) - \hat{f}_2(w) \exp(-w\pi)),$$

(21)
$$B(w) = \Delta(w)(\hat{f}_2(w) - \hat{f}_1(w) \exp(-w\pi)),$$

where

(22)
$$\Delta(w) = (1 - \exp(-2w\pi))^{-1}.$$

In view of (15), (20), (21), we have

(23)
$$w_2(x, y) = \frac{2}{\pi} \int_0^{\infty} (f_1(\zeta) D(x, y; \zeta) + f_2(\zeta) E(x, y; \zeta)) d\zeta,$$

where

(24)
$$D(x, y) = \int_0^\infty \Delta(w)(\exp(-wx) - \exp(-2w\pi + wx))$$

$$\cos wy \cos w\zeta d\zeta,$$

(25)
$$E(x, y) = \int_0^\infty \Delta(w)(\exp(-w(\pi - x)) - \exp(-w(\pi + x)))$$
$$\cdot \cos wy \cos w\zeta d\zeta.$$

LEMMA 1. (i) w₂ is harmonic in the open strip.

(ii) $\lim_{y\to 0} w_2(x, y)$ exists for $0 \le x \le \pi$ and defines a function continuous on $[0, \pi]$.

- (iii) $\lim_{y\to 0} w_{2,y}(x, y) = 0, 0 < x < \pi$.
- (iv) $\lim_{x\to 0} w_2(x, y) = f_1(y)$, $\lim_{x\to \pi} w_2(x, y) = f_2(y)$.

PROOF. The proof of (i), (ii), (iii) is straightforward. The proof of (iv) proceeds by approximating the kernels D and E by the Poisson kernel. Details are omitted.

In view of Lemma 1 and equation (13), the boundary value problem (1)-(6) reduces to the following integral equation

(26)
$$u(x) = \frac{1}{\pi} \int_0^{\pi} G[z; u(z)] K(x, z) dz + w_2(x, 0), \quad 0 \le x \le \pi,$$

where $u(x) = w_1(x, 0)$ and

(27)
$$K(x, z) = \log \frac{1 - \cos(x - z)}{1 - \cos(x + z)}$$

Define

(28)
$$Tu(x) = \frac{1}{2\pi} \int_{0}^{\pi} G[z; u(z)] K(x, z) dz + w_{2}(x, 0), \qquad 0 \le x \le \pi.$$

Then u is a solution of (26) if and only if u is a fixed point of T. In the sequel, our arguments will be couched in the language of fixed point theorems. Let E be the Banach space of continuous functions on $[0, \pi]$. Then it is clear that T takes E into E. It is also clear that T is completely continuous, since the function $\log(1-\cos(x\pm z))$ is integrable in z.

LEMMA 2. T has at most one fixed point.

The proof of this lemma proceeds exactly as in the proof of Theorem 4 of [1].

LEMMA 3. Let $T_{\lambda} = \lambda T$, $0 < \lambda \le 1$. If u is a fixed point of T_{λ} , then

$$\inf_{x}\inf(f_1(x),f_2(x))\leq u\leq c.$$

Proof. Let

$$v(x,y) = \frac{\lambda}{\pi} \int_0^{\pi} \log \frac{1 - 2 \exp(-y) \cos(x - z) + \exp(-y)}{1 - 2 \exp(-y) \cos(x + z) + \exp(-y)} \cdot G[z; w(z,0)] dz + \lambda w_2(x, y).$$

Then, by Lemma 1,

$$\lim_{x \to 0} v(x, y) = \lambda f_1(y),$$

$$\lim_{x \to x} v(x, y) = \lambda f_2(y),$$

$$-\lim_{y \to 0} \frac{\partial v}{\partial y}(x, y) = G[x, u(x)].$$

To prove the double inequality of the lemma, we use the maximum modulus principle for harmonic functions.

(i) u is $\leq c$.

Suppose on the contrary that u(x) > c for some x. Let x_M be such that $u(x_M) = \max u(x)$. Then $G[x_M; u(x_M)] < 0$ by the definition of G, since $u(x_M) > c$. On the other hand, v is not constant. Hence, by the maximum principle,

$$-y^{-1}(v(x_M, y) - v(x_M, 0)) > 0, y > 0.$$

Since $-v_{\nu}(x_{M}, 0) = G[x_{M}, u(x_{M})]$, we have a contradiction. This contradiction proves (i).

(ii) u is $\geq \inf_x \inf (f_1(x), f_2(x)) \equiv a$.

Suppose on the contrary that for some x, we have u(x) < a. Let x_m be such that $u(x_m) \equiv \inf u(x)$. Then $u(x_m) = \inf v(x, y)$ by the maximum principle. The proof proceeds on the same lines as in part (i).

We now state our existence theorem.

THEOREM 1. T has a unique fixed point u. Furthermore, $a \le u \le c$.

PROOF. Suppose that T has no fixed point. Then by a theorem of Schaefer [2], there exist a sequence (u_n) of elements of E and a se-

quence of real numbers $0 < \lambda_n < 1$, such that

$$u_n = \lambda_n T u_n, \qquad ||u_n|| \to \infty.$$

But by Lemma 3, $a \le u_n \le c$. This contradiction proves that T has a fixed point u, which is unique by Lemma 2. Furthermore, $a \le u \le c$, by Lemma 3. Thus the theorem is proved.

THEOREM 2. The boundary value problem (1)-(6) has a unique solution.

PROOF. Each fixed point of the operator T gives rise to a solution of the boundary value problem (1)-(6) in an obvious way. Hence by Theorem 1, the given boundary value problem has a solution. Let v(x, y), v'(x, y) be two solutions of the boundary value problem. Let w(x, y) = v(x, y) - v'(x, y). Then w vanishes on the edges x = 0, $0 \le y < \infty$, and $x = \pi$, $0 \le y < \infty$. Using the maximum modulus principle, and the properties of the function G[x, u(x)], we can prove that w vanishes on the base $0 \le x \le \pi$. Then, again by the maximum modulus principle, w must be the null function. This proves the theorem.

The problem of actually constructing the solution of the problem is one of great interest. If T is a contraction, i.e., if $||Tu-Tu'|| \le \alpha ||u-u'||$, $0 < \alpha < 1$, then the fixed point of T can be obtained by successive approximation. We shall show that even when T is only nonexpansive, i.e., $||Tu-Tu'|| \le ||u-u'||$, the fixed point of T can still be obtained by successive approximation.

THEOREM 3. Let T be nonexpansive. Then the fixed point u of T can be obtained by successive approximation. More precisely, let $T_n = \alpha_n T$, $0 < \alpha_n < 1$.

If $\alpha_n \to 1$ and $\alpha_n^n \to 0$, then $\lim_n T_n^n w = u$ for any w in E.

PROOF. By T_n^n we mean of course the *n*th iterate of T_n . For each n, T_n is a contraction, and hence has a fixed point u_n , $u_n = T_n u_n$.

By Lemma 3, the sequence (u_n) is bounded, and, by the above relation, is relatively compact. Hence (u_n) has a cluster value. Now, each cluster value of (u_n) is a fixed point of T. Since by Theorem 1, T has a unique fixed point, it follows that (u_n) has a unique cluster value u. Since (u_n) is relatively compact, (u_n) converges to u. Now, if w is any element of E,

$$||T_n^n w - u_n|| = ||T_n^n w - T_n^n u_n||$$

$$\leq \alpha_n^n ||w - u_n||.$$

Since (u_n) is bounded, the theorem follows.

ACKNOWLEDGEMENTS. The author had several helpful discussions with Professor Leon Knopoff on the subject matter of this paper.

REFERENCES

- 1. W. R. Mann and J. F. Blackburn, A nonlinear steady state temperature problem, Proc. Amer. Math. Soc. 5 (1954), 979-986.
- 2. H. Schaeser, Über die Methode der a priori-Schranken, Math. Ann. 129 (1955), 415-416.

University of Saigon and University of California, Los Angeles