ON A COHOMOLOGY THEORY FOR PAIRS OF GROUPS
LUIS RIBES

Let H be a subgroup of a group G, and let A be a left G-module.
Consider the abelian group

X(G, H, 4) = {f: G > 4| f(xy) = of(3y) + f(x), fin = 0}

of crossed homomorphisms from G to 4 vanishing on H. Clearly this
is a left-exact functor in the category ¢ of left G-modules. The nth
right derived functor of X (G, H, —) in ¢M isdenoted by H*(G, H, —).
The group H*(G, H, 4), A € ¢, is called the nth cohomology group
of the pair (G, H) with coefficients in A. These groups were first de-
scribed and studied by M. Auslander in [1], who also found the
sequence of Proposition 1.2.

In this note we prove an excision property for the functors
H*(G, H, —), Theorem 2.2, and we find a direct sum decomposition
of them under suitable conditions, Propositions 2.3 and 2.5. From
this one deduces by standard methods a Mayer-Vietoris type se-
quence for the cohomology of groups, Proposition 2.6.

The results in this paper are part of the author’s doctoral disserta-
tion at the University of Rochester. The author wishes to thank
C. E. Watts for his advise and encouragement.

1. Let HCG be groups, and let 4 € M. Then 4* =Homg(ZG, 4)
is a left G-module in the obvious way (ZG denotes the integral group
ring, and Homg(—, —)=Homgzxz(—, —)). Let Z be the group of
integers with G-structure defined by xn=n, x&EG, nE&Z. Then one
has the natural isomorphisms

Homg(Z, A*) = Home(Z, Homy(ZG, A))
~ Homp(ZG ®¢ Z, A) =~ Homu(Z, A).

Hence, since every G-injective module is H-injective, cf. [4, p. 31,
Proposition 6.2a], one has

H™G, A*) ~ H*(H, A)

for AE ¢IN. (A* is exact in ¢IN and preserves injectives.)
Now let y: A—A4* be the G-monomorphism defined by vy(a)x =xa,
a€EA,xEG. LetT'=coker .

LemMa 1.1. Home(Z, T') = X (G, H, A) as functors in M.
Proor. Notice that I'=A4*/Im . We make the identifications
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A* = Homy(ZG, A) = {f: G— A| f(xy) = %f(y), « € H, y € G},
Im v = Homg(ZG, 4) = {g: G— 4| g(xy) = xg(y), x, y EG}.

LetfEA*and assume f+ImyET9=Homg(Z,T). Thenzf —fEIm ¥,
VzEG;s0 (3f —f) (xy) =x(2f — ) (v) =%f(y2) —xf(y), and also (zf —f) (xy)
=flxyz)—flxy), Vx, y, 2€G. Let z=y7; then flxy)=+(y)+fx)—af (1).
Define f,EIm v by f.(x) =xf(1); then (f—f)+Im y=f+Im v, and
f—f.E€X(G, H, A). It is easily checked now that the map f+Im ¥y
—f—f, is a natural isomorphism from Hom¢(Z, T') to X (G, H, A).

ProposITION 1.2. Let HCG be groups, and let A E ¢M. Then there
exists a long exact sequence

i ;
00 465 48 56, B, 4) D H(@G, 4)

i ) j
LEH, )5 BG, H, )L -
where the i's are restriction maps induced by the inclusion H—G.

Proor. Apply Extg(Z, —) to the short exact sequence 0—A4A—A4*
—-I'—0. (Exti(Z, I'(4)) =~ H**(G, H, A) by Lemma 1.1, since I'(4)
is exact and Extg(Z, I'(4)) is effaceable in ¢M.)

CoroLLARY 1.3. Let 1 denote the group with one element. Then
Hn(Gy 11 A) %Hn(G, A)y ngzv AEGm-

2. Let HCG, LCK be groups. Let ¢: K—G be a group homomor-
phism with ¢LCH. If A& M, denote by ®4 the corresponding
K-module structure in A induced by ¢, x-a=¢(x)e, xEK, aEA.
Thenginducesa natural homomorphisme!: X (G, H,A)—X(K,L,®4)
defined by (¢'f)x =f(¢x), which in turn induces mappings ¢*: H*(G,
H, A)—»H*(K, L, A). If ¢ is the inclusion we will denote ®4 by A4
again.

LemMA 2.1. Let HCK CG be groups. Then {H*(K, H, —)|n=1} is
a universal sequence of commected functors in ¢ (“0-foncteur uni-
versel” in the terminology of [6]).

Proor. The sequence is certainly exact. So, it suffices to show that
it is effaceable (see [6, Proposition 2.2.1]). If 4 is a G-injective mod-
ule, then it is K-injective, since ZG is K-free (see [4, p. 31, Proposition
6.2a]). Thus H~(K, H, A)=0if n>1.

Now let H and K be groups with a common subgroup L, and denote
by H %, K the amalgamated product of H and K with amalgamated
subgroup L (i.e., the pushout of L—H and L—K in the category of
groups), cf. {7, p. 312].
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THEOREM 2.2 (ExcisioN AxIoM). Let L be a common subgroup of
groups H and K and let G=H 1 K. Then the morphisms of functors
in am,

¢n:Hﬂ(G, Hr —)—)H"(K, Lv _)) n 17
induced by the inclusion ¢: (K, L)—(G, H), are isomorphisms.

ProoF. By Lemma 2.1, it suffices to show that ¢! is an isomor-
phism. Let 4 € ¢W; if fEX (G, H, A) and k€K, then, by definition,
(¢Y)k =fk. Consider the map ¢: X(K, L, A)—=X (G, H, A) defined in
the following manner. Let gEX (K, L, A) and xEG; suppose a,a;

- - a, is a representative word of x (a; belongs either to H or to K,
i=1,2, - - - ,n). Then set

Wox = g(a) + arg' (@) + - - - + @102 - - - an18'(an)

where g'(a;) =g(a;) if ¢;EK, and g’(a;) =0 if ¢;EH.

It is easily proved that ¢g is a well-defined crossed homomorphism
of G to A vanishing on H, i.e. ygEX (G, H, A). Moreover, ¢ is a
homomorphism.

On the other hand it is plain that ¢¥ =id. on X (K, L, A4); also, if
@@ - - - a4, is a representative word of xEG, and fEX (G, H, A), then

@) (N(=) = (¢)'(a1) + ai(e) (@) + - - - + @102 - - - aua(e'f) (an)
=f(al) + Glf(dz) + -+ aa - an—lf(an)
= f(araz - - - @a) = f(%),

i.e. Yo'=id. on X (G, H, A). Thus ¢! is an isomorphism.

ProrositioN 2.3. Let G=H *1 K where L is a common subgroup of
groups H and K. Then

H"G, L, A) ~ HNH, L, A) ® H™K, L, 4),

for n=1 and A E ¢, where the canonical projections are induced by
the inclusions (H, L)—(G, L) and (K, L)—(G, L).

Proor. By Lemma 2.1 it suffices to show that the result holds on
dimension 1. If fEX (G, L, 4), defineof = (f1, f2), where fLEX (H, L, A)
and f,EX (K, L, A) are the restrictions of f to H and K respectively.
Conversely, given gg€X(H, L, A) and gEX(K, L, A), define
VY (g1, g2) =g: G—A as follows: if a1a; - - - a, is a representative word
of xEG, put g(x) =g’ (a1) +aig’ (@) + - - - +a1az - - - an1g'(as), where
g'(a;) is g1(a;) or go(a;) depending on whether ¢; is in H or K respec-
tively (notice that gy =g 2=0). Then g is a well-defined crossed
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homomorphism of G to 4 vanishing on L, i.e. gEX(G, L, A). Hence
¢ and ¢ are inverse isomorphisms as desired.

REMARK. Proposition 2.3 has also been proved independently by
M. Barr and J. Beck; see [2].

CoroLLARY 2.4 (LyNpoN [8]; BARR AND RINEHART [3]). Let
G=H * K (free product of groups H and K) and let AE M. Then
H*(G, A)=H"(H, A)®H"(K, A) if n=2.

Proor. Put L =1 in Proposition 2.3 and apply Corollary 1.3.

We now prove a converse to Proposition 2.3. Notice first that given
a group T and an abelian group B, a T-module structure on B is
nothing but a group homomorphism T—Aut(B), where Aut(B) is
the group of automorphisms of B.

ProposITION 2.5. Let H and K be subgroups of a group G, and let
L=HNK. Assume that for every abelian group A and every pair
o1: HoAut(4), ¢2: K—Aut(A4) of group homomorphisms that coincide
on L there is a group homomorphism ¢: G—Aut(A4) extending ¢, and
©2. Suppose, moreover, that the isomorphisms of Proposition 2.3 hold.
Then G=H *, K.

Proor. In particular
XG,L,A)~ X(H, L, 4) & X(K, L, 4)

for A€ ¢M, i.e. every pair fi: H—A, f,: K—A of crossed homomor-
phisms vanishing on L extends uniquely to a crossed homomorphism
f: G—A. Let G, be the subgroup of G generated by H and K ; we first
show that G =G,. Assume G#G,. lf xEG, let % denote the correspond-
ing left coset of G, in G. Let I =I(G/G,) be the free abelian group
generated by {x—l[ l;éxEG}, and let G act on I by y(z—1)
=((yx)"—1)—(F—1), x, y&EG. Then ISsM. Let fi: H—I and
fo: K—1I be the zero crossed homomorphisms; these extend to the
zero crossed homomorphism G—I. On the other hand f: G—I, de-
fined by fx =%—1, x &G, is plainly a nonzero crossed homomorphism
extending f; and f,, contradicting the hypothesis. Hence G =G.
We will see now that

L—>H
Il
K—-G

is a pushout diagram (all maps are inclusions), i.e. G=H 1, K. Sup-
pose P is a group and let ¢;: H—P and ¢,: K—P be group homomor-
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phisms that coincide on L. Denote by F(P) the free abelian group on
the set P, and consider a standard embedding P—Aut(F(P)). Then
by assumption ¢; and ¢» extend to a group homomorphism ¢: G
—Aut(F(P)). However, since G is generated by H and K, ¢ must be
unique and into P.

Finally, we state the following proposition whose proof is formally
as in Theorem 15.3(c), p. 43 of [5], and which is therefore omitted.

ProposITION 2.6 (A MAYER-VIETORIS SEQUENCE). Let L, H, K, G
and A be as in Theorem 2.2. Then the sequence

A
. = He(L, A) S HY(G, 4)

v
i"SH«(H, A) & H(K, A) > H(L, A) — - - -

where A=H+'(L, 4)3,H«(K, L, A)¥"SHYG, H, A)—H«(G, A) with 8
and j as in Proposition 1.2, and ¢ as in Theorem 2.2; ¢ is the direct sum
of the maps tnduced in cohomology by the inclusions H—G and K—G;
W (91, v2) = hlvy — hive, where b and 1 are maps induced in cohomology
by the inclusions hy: L—H and hy: L—>K respectively, nEHI(H, A),
nEHYK, A).
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