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Let H be a subgroup of a group G, and let A be a left G-module.

Consider the abelian group

X{G, H,A)= {f:G->A\f{xy) = xf{y) +/(*),/,* = 0}

of crossed homomorphisms from G to A vanishing on H. Clearly this

is a left-exact functor in the category G9IZ of left G-modules. The nth

rightderivedfunctorof AT(G,ii, —) in G9Tl is denoted by Hn+l{G,H, — ).

The group H"{G, H, A), A E g5TC, is called the nth cohomology group

of the pair {G, H) with coefficients in A. These groups were first de-

scribed and studied by M. Auslander in [l], who also found the

sequence of Proposition 1.2.

In this note we prove an excision property for the functors

Hn{G, H, —), Theorem 2.2, and we find a direct sum decomposition

of them under suitable conditions, Propositions 2.3 and 2.5. From

this one deduces by standard methods a Mayer-Vietoris type se-

quence for the cohomology of groups, Proposition 2.6.

The results in this paper are part of the author's doctoral disserta-

tion at the University of Rochester. The author wishes to thank

C. E. Watts for his advise and encouragement.

1. Let HCG be groups, and let AEgWI. Then A* = HomH{ZG, A)
is a left G-moduIe in the obvious way {ZG denotes the integral group

ring, and Hom//( —, -) = rIomZfl(-, —)). Let Z be the group of

integers with G-structure defined by xn = n, xEG, nEZ. Then one

has the natural isomorphisms

HomG(Z, A*) = HomG(Z, Hom„(ZG, .4))

~ HomH(ZG ®GZ, A) « HomH(Z, A).

Hence, since every G-injective module is 7i-injective, cf. [4, p. 31,

Proposition 6.2a], one has

Hn{G, A*) « H"{H, A)

for AEgSÏÏ- {A* is exact in G9TC and preserves injectives.)

Now let 7: A—>A* be the G-monomorphism defined by 7(a)x=xa,

aEA, xEG. Letr = coker7.

Lemma 1.1. HomG(Z, T) ~X{G, H, A) as functors in Gsm.

Proof. Notice that r = ^4*/Im 7. We make the identifications
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A* = Hom^ZG, A) = {f:G-+A\ f(xy) = xf(y), xEE,yEG\,

Im y = Hom0(ZG, A) = {g: G -* A \ g(xy) = xg(y), x,yEG¡.

LetfEA* and assume/+ImyGrG= HomG(Z, T). Then zf—fEIm 7,

Vz G G ; so (z/ -/) (xy) = x (z/ -/) (y ) = */(yz) - x/(y), and also (zf -/) (xy)

=f(xyz)—f(xy), Vx, y, zGG. Let z=y_1; then /(xy)=xf(y)+/(x)—x/(l).

Define/cGIm 7 by/c(x) =x/(l); then (/—/„)+Im 7=/+Im 7, and

f—fcEX(G, H, A). It is easily checked now that the map/+Im 7

•-*/—/« is a natural isomorphism from HomG(Z, T) to X(G, 77, /I).

Proposition 1.2. Let HQG be groups, and let AEoWl- Then there

exists a long exact sequence

0 -» AG 4 ¿* -> 77KG, 77, A)-^H1(G, A)

^H^H, A)->H2(G, H,A)^>

where the t's are restriction maps induced by the inclusion H—>G.

Proof. Apply ExtG(Z, —) to the short exact sequence 0—>A—>A*

->T^>0. (ExtgiZ, r(^))«7i"+I(G, 77, A) by Lemma 1.1, since T(A)
is exact and ExtG(Z, T(A)) is effaceable in G3TC.)

Corollary 1.3. Let 1 denote the group with one element. Then

Hn(G, l, A)~Hn(G, A), n^2, AEgWI.

2. Let HEG, LEK be groups. Let <p: K-^G be a group homomor-

phism with <pLEH. If AEoSK, denote by $A the corresponding

X-module structure in A induced by <p, x-a = (p(x)a, xEK, aE-A.

Then<p induces a natural homomorphismip1: X(G, H,A)^>X(K,L,$A)

defined by (<plf)x=f(<px), which in turn induces mappings <pn: Hn(G,

77, A)^>Hn(K, L, A). If <p is the inclusion we will denote $A by A

again.

Lemma 2.1. LetHEKCGbe groups. Then {H"(K,H, -)|»^l} is

a universal sequence of connected functors in c3îl ("d-foncteur uni-

versel" in the terminology of [ó]).

Proof. The sequence is certainly exact. So, it suffices to show that

it is effaceable (see [6, Proposition 2.2.1]). If A is a G-injective mod-

ule, then it is ii-injective, since ZG is 7C-free (see [4, p. 31, Proposition

6.2a]). ThusH*(K, H,A)=0iin>l.
Now let 77 and K be groups with a common subgroup L, and denote

by 77 *L K the amalgamated product of 77 and K with amalgamated

subgroup L (i.e., the pushout of L—»77 and L-^K in the category of

groups), cf. [7, p. 312].
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Theorem 2.2 (Excision Axiom). Let L be a common subgroup of

groups H and K and let G = H */_, K- Then the morphisms of functors

in eïHZ.

„»: H»{G, H, -) -» H"{K, L, -),       » £ 1,

induced by the inclusion <p: {K, L)—>{G, H), are isomorphisms.

Proof. By Lemma 2.1, it suffices to show that (p1 is an isomor-

phism. Let AEgíM; iífEX{G, H, A) and kEK, then, by definition,
^if)k=fk. Consider the map^: X{K, L, A)^X(G, H, A) defined in
the following manner. Let gEX{K, L, A) and xEG; suppose aia2

• • • an is a representative word of x (a,- belongs either to H or to K,

¿ = 1,2, • • • ,n). Then set

{i¡/g)x = g'{ai) + aig'{a2) + • ■ • + axa2 ■ ■ • an-ig'{an)

where g'{a¡) = g(a¡) if atEK, and g'{a¡) =0 if aiEH-

It is easily proved that \pg is a well-defined crossed homomorphism

of G to A vanishing on H, i.e. \¡/gEX{G, H, A). Moreover, \p is a

homomorphism.

On the other hand it is plain that (p1\p = id. on X{K, L, A); also, if

a\a2 ■ ■ • an is a representative word of xEG, andfEX{G, H, A), then

{W){f){x) = OW'iai) + aiWia*) + ■ ■ ■ + aia2 ■ ■ ■ an^{^f)'{an)

= f{ai) + aif{a2) + ■ • • + <zia2 ■ ■ ■ an-if{an)

= f{aia2 •••«„) -fix),

i.e. ^<£>' = id. on X{G, H, A). Thus tpl is an isomorphism.

Proposition 2.3. Let G = H *i K where L is a common subgroup of

groups H and K. Then

H»{G, L, A) « H'(H, L, A) © H*{K, L, A),

for n ^ 1 and A E g3TC, where the canonical projections are induced by

the inclusions {H, L)-+{G, L) and {K, L)-*{G, L).

Proof. By Lemma 2.1 it suffices to show that the result holds on

dimension 1. If/G^(G, L, A), define<p/= (/i,/2), wherefiEX{H, L,A)
and f2EX{K, L, A) are the restrictions of / to H and K respectively.

Conversely, given giEX{H, L, A) and g2EX{K, L, A), define

\p{gu g2)=g: G—>A as follows: if aia2 ■ ■ ■ an is a representative word

of xEG, put g{x)=g'{a1)+aig'{a2)-{- ■ ■ ■ +aia2 ■ ■ ■ a„_ig'(a„), where

g'{ai) is gi(a<) or g2{a¡) depending on whether at is in H or K respec-

tively (notice that gi|L = g2iL = 0). Then g is a well-defined crossed
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homomorphism of G to A vanishing on L, i.e. gEX(G, L, A). Hence

(p and \[/ are inverse isomorphisms as desired.

Remark. Proposition 2.3 has also been proved independently by

M. Barr and J. Beck; see [2].

Corollary 2.4 (Lyndon [8]; Barr and Rinehart [3]). Let

G = H*K (free product of groups H and K) and let AEgSK. Then

H"(G, A) =H"(H, A)®Hn(K, A) t/« = 2.

Proof. Put 7 = 1 in Proposition 2.3 and apply Corollary 1.3.

We now prove a converse to Proposition 2.3. Notice first that given

a group T and an abelian group B, a F-module structure on B is

nothing but a group homomorphism T—>Aut(B), where Aut(B) is

the group of automorphisms of B.

Proposition 2.5. Let 77 and K be subgroups of a group G, and let

L = HC\K. Assume that for every abelian group A and every pair

(pi: 77—*Aut(^4), <p2: K—>A\it(A) of group homomorphisms that coincide

on L there is a group homomorphism <p: G—>Aut(^4) extending <pi and

<p2. Suppose, moreover, that the isomorphisms of Proposition 2.3 hold.

Then G = H*LK.

Proof. In particular

X(G, L, A) ~ X(H, L, A) ® X(K, L, A)

for AEg^R; i.e. every pair f\\ 77—^^4, /2: K—*A of crossed homomor-

phisms vanishing on L extends uniquely to a crossed homomorphism

/: G—''A. Let G\ be the subgroup of G generated by 77 and K; we first

show that G = G\. Assume G^G\. If xGG, let x denote the correspond-

ing left coset of G\ in G. Let I = I(G/Gi) be the free abelian group

generated by {x— 11 1 t±xEG\ , and let G act on 7 by y(x — 1)

= ((yx)--\)-(y-\), x, yEG. Then 7GG9TC. Let /x: 77->7 and
f2: K—>7 be the zero crossed homomorphisms; these extend to the

zero crossed homomorphism G—>I. On the other hand /: G—»7, de-

fined byfx = x — 1, xEG, is plainly a nonzero crossed homomorphism

extending/i and/2, contradicting the hypothesis. Hence G = Gi.

We will see now that

7_->77

i     I
K->G

is a pushout diagram (all maps are inclusions), i.e. G = 77 *l K. Sup-

pose P is a group and let <pi: H—*P and <p2: K—>P be group homomor-
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phisms that coincide on L. Denote by F{P) the free abelian group on

the set P, and consider a standard embedding P—>Aut{F{P)). Then

by assumption ipi and <& extend to a group homomorphism ¡p: G

—»Aut(F(P)). However, since G is generated by H and K, ¡p must be

unique and into P.

Finally, we state the following proposition whose proof is formally

as in Theorem 15.3(c), p. 43 of [5], and which is therefore omitted.

Proposition 2.6 (A Mayer-Vietoris Sequence). Let L, H, K, G

and A be as in Theorem 2.2. Then the sequence

A
■ ■ ■  ->H*-l{L, A)^H«{G, A)

</> ^-> H"{H, A) © H"{K, A) -> H"{L, A) -> • • •

where A = H"~1{L, A)±>H«{K, L, A)(^H"{G, H, A)-*H"{G, A) with 5
andj as in Proposition 1.2, and tp" as in Theorem 2.2 ; <p is the direct sum

of the maps induced in cohomology by the inclusions H^>G and K—^G ;

^{v\, v2) =h\v]—h2v2, where h\ and h% are maps induced in cohomology

by the inclusions h\. L—^H and h2: L—+K respectively, ViEH"{H, A),

v2EH"{K, A).
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