THE SET OF IRREDUCIBLE OPERATORS IS DENSE

HEYDAR RADJAVI AND PETER ROSENTHAL

Let \mathfrak{X} be a separable (finite or infinite-dimensional) complex Hilbert space. P. R. Halmos [1] has shown that the set of irreducible operators on \mathfrak{X} , (i.e., operators with no nontrivial reducing subspaces), is uniformly dense in the space of bounded operators on \mathfrak{X} . In this note we give a very simple proof of Halmos's theorem.

Let A be any bounded operator on \mathfrak{A} and let $\epsilon > 0$. By the spectral theorem there exists a Hermitian operator D whose matrix is diagonal with respect to an o.n. basis $\{e_n\}$ such that

$$||D-(A+A^*)/2||<\frac{\epsilon}{4}.$$

Then there is a Hermitian operator D_1 diagonal with respect to $\{e_n\}$ such that all the eigenvalues of D_1 are distinct and $||D-D_1|| < \epsilon/4$. Now let D_2 be any Hermitian operator within $\epsilon/2$ of $(A-A^*)/2i$ whose matrix with respect to $\{e_n\}$ has all entries different from 0; (such operators obviously exist in profusion). Then the operator D_1+iD_2 is within ϵ of A. Also D_1+iD_2 is irreducible, since the invariant subspaces of D_1 are the subspaces spanned by subcollections of $\{e_n\}$, and none of these are invariant under D_2 except $\{0\}$ and \mathfrak{F} .

REFERENCE

1. P. R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215-223.

University of Toronto

Received by the editors September 12, 1968.