A NOTE ON THE HOLONOMY GROUP OF MANIFOLDS
WITH CERTAIN STRUCTURES

D. E. BLAIR AND A. P. STONE!

1. Introduction. There has recently been considerable interest in
manifolds carrying a tensor field h of type (1, 1) which satisfies cer-
tain conditions. The reader should see any of the references [1], [3],
[4], or [5] listed at the end of this paper. A typical restriction is that
h satisfies some algebraic condition, such as the assumption that h
has distinct eigenvalues. Integrability conditions on h constitute yet
another class of restrictions that might be imposed. For example,
one might require either that the Nijenhuis tensor [h, k] be zero or
the stronger condition that h has a vanishing covariant derivative
with respect to any vector field.

In this paper some properties of the holonomy group of a manifold
with certain structures are proved. One such result is contained in
Theorem 3.1 where it is assumed that there is a cyclic A with the
property that Vxh =0 for every vector field X. It is then shown that
if e, is a generator for h, then elements of the holonomy group give
rise to other generators for h. If the additional restriction that A has
a vanishing Lie derivative is imposed, then Theorem 3.4 yields the
result that the manifold is flat.

2. Notation and definitions. Let M be a Riemannian manifold of
dimension (z+1). Covariant differentiation with respect to the Rie-
mannian connection on M will as usual be denoted by V, and £
will denote Lie differentiation. The manifold M is said to be flat if
and only if the curvature R vanishes; that is, if and only if

R(X, Y)Z = VxVyZ bl VnyZ - V[x,y]Z = 0

for any three vector fields X, ¥ and Z on M.

The holonomy group on M is defined as follows. Let m& M and
p=(m, ey - - -, e,) EF(M), the principal O(n+1)-bundle of ortho-
normal frames over M where O(n-+1) is the orthogonal group. Let
v: [0, 1] M be a closed piecewise differentiable curve starting and
ending at m. Let 7, denote parallel translation around vy with respect
to the Riemannian connection. The kolonomy group at m of the Rie-
mannian connection is denoted by ®,, and defined by
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®n = {g €E0(n + 1)| pg = 74(p) for some 7}.

The statement that (m, eJ, - - -, s ) =(m, e, - - -, €n)g will be de-
noted by e/ =ge;, and ¥* is our notation for the tangent vector field
to v.

Let M,, denote the tangent space at m. A tensor field h of type
(1, 1) is said to be cyclic if and only if the minimal and characteristic
polynomials of h are identical. Thus if it is assumed that h is non-
singular at a point then there exists a generator ¢,& M,, such that
{he,: 0Si<n} is a basis of M.

Finally, it should be remarked that if h is singular at a point, then
at this point a nonsingular tensor field hA* can be found such that
Vxh=Vxh* for every vector field X. The tensor field h* is obtained
by setting h* =h-+al, where « is a suitable nonzero constant.

3. Some properties of the holonomy group.

THEOREM 3.1. If there exists on M a cyclic tensor field h of type
(1, 1) with generator ey at mE M such that

{es = hieg|i=0,1,---,n}

is a basts of the tangent space M,, at m, and if Vxh=0 for every vector
field X, then ge, is also a generator for h for every g &P .

Proor. Let Y;(¢), =0, 1, - - -, n be parallel vector fields along ¥
with Y;(0) =e; and Y;(1) =e/; thatis, V,»Y;=0 and Y;(0) =e;, and
hence Y;(1) =e!. It should first be observed that h Y, is parallel along

4 since
V-,oh Yo = (V«,oh) Yo + h(V‘,o Yo) = 0.

Now hY,(0) = hey=e; and hence by the uniqueness of solutions of the
differential equations V,+h¥Y,=0, h¥,(1) = ¥;(1) =¢{. One can then
proceed inductively. If h#*'Y, 1is parallel, then V.,h'Y,
=(V,+h)h* 1Y+ h(V,+h" 1Y) =0. Now h‘Y,(0)=e; and therefore
by the uniqueness of solutions h*Y,(1) = ¥;(1). Hence Y,(1)=ge, is
a generator for every g&®,..

LEMMA 3.2. If there exists on M a cyclic tensor field h of type (1, 1)
such that Vxh =0 for every vector field X, then the coefficients of the char-
acteristic polynomial of h are constant.

Proor. Note first that Vxhi=0 for any nonnegative integer %
and any vector field X. If the vector field X, is a generator for h and
if h has a characteristic polynomial

B™ = ool + b + - - - + ah,
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then Vxh"tiX,—h"tVxX,=(Vxh"t)X(=0. Denote h‘X, by X,
and observe that {X;:0<i<n} is a basis of vector fields. A short
calculation will then establish the result that

Veh™X, = ) (Xa) X + AV X,,
=0
and consequently that Y r, (Xa)X:=0. Hence X(a;)=0 implies
ay, a1, * - +, G, are all constant.

COROLLARY. If there exists on M a tensor field h of type (1, 1) with
distinct ergenvalues No, - - -, Ao such that Vxh=0 for every vector field
X, then the eigenvalues Ny, - - - , N, are all constant.

The corollary follows immediately from the facts that any h with
distinct eigenvalues is necessarily cyclic and that the coefficients a;
of the characteristic polynomial of h are symmetric functions of the
eigenvalues.

THEOREM 3.3. If there exists on M a tensor field h of type (1, 1) with
distinct eigenvalues Ny, - - -, N, with corresponding eigenvectors { e;} at
m&E M, and if Vxh=0 for every vector field X, then { ge.-} is also a set
of eigenvectors of h for every g&®,,, and moreover g is a diagonal matrix
with elements +1 or —1 on the main diagonal.

ProoF. Let Y;(¢) be vector fields as in the proof of Theorem 3.1 and
compute V,»hY;. One obtains the result that

V‘,:h Y,' = (Vph) Y.' + h(V«,t Y’) =0

and hence hY; is parallel along v. Now hY;(0) =he;=\;e;=\;Y;(0),
but the eigenvalues \; are constant so that he! =\;ef wheree! = ¥;(1),
and Y,(1), by our choice, is ge;. Finally, since the \; are also eigen-
values for ¢;, g must be a diagonal matrix with elements +1 or —1
on the main diagonal.

If h satisfies the additional condition that its Lie derivative van-
ishes, then M is flat. This fact is proved in the following theorem.

THEOREM 3.4. If there exists on M a cyclic tensor field h of type (1, 1)
such that Vxh=Lxh =0 for every vector field X, then M is flat.

Proor. It should first be observed that
(£xh)Y = 0 = (Vxh)Y + h(VarX) — VarX

for any vector fields X and Y, and hence Vo,y X =hVyX. If X, is a
generator for h, let X;=h'X, so that the set {Xo(m), c e, X..(m)}
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is a basis of M. Itis clear that [X;, X;] = —h#*i€x,X =0, and hence
R(X;, X)) Xi = Vx,Vx,; X} — Vx,Vx X,
= h'Vx (hi*Vx X)) — hiVx (h"**Vx X,)
=0,

which completes the proof of the theorem.

It should be remarked that Theorem 3.4 remains valid if the hy-
pothesis that h is cyclic is replaced by the hypothesis that h has dis-
tinct eigenvalues.
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