A NOTE ON THE HOLONOMY GROUP OF MANIFOLDS WITH CERTAIN STRUCTURES

D. E. BLAIR AND A. P. STONE¹

1. Introduction. There has recently been considerable interest in manifolds carrying a tensor field h of type (1, 1) which satisfies certain conditions. The reader should see any of the references [1], [3], [4], or [5] listed at the end of this paper. A typical restriction is that h satisfies some algebraic condition, such as the assumption that h has distinct eigenvalues. Integrability conditions on h constitute yet another class of restrictions that might be imposed. For example, one might require either that the Nijenhuis tensor [h, h] be zero or the stronger condition that h has a vanishing covariant derivative with respect to any vector field.

In this paper some properties of the holonomy group of a manifold with certain structures are proved. One such result is contained in Theorem 3.1 where it is assumed that there is a cyclic h with the property that $\nabla_X h = 0$ for every vector field X. It is then shown that if e_0 is a generator for h, then elements of the holonomy group give rise to other generators for h. If the additional restriction that h has a vanishing Lie derivative is imposed, then Theorem 3.4 yields the result that the manifold is flat.

2. Notation and definitions. Let M be a Riemannian manifold of dimension (n+1). Covariant differentiation with respect to the Riemannian connection on M will as usual be denoted by ∇ , and \mathcal{L} will denote Lie differentiation. The manifold M is said to be flat if and only if the curvature R vanishes; that is, if and only if

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z = 0$$

for any three vector fields X, Y and Z on M.

The holonomy group on M is defined as follows. Let $m \in M$ and $p = (m, e_0, \dots, e_n) \in F(M)$, the principal O(n+1)-bundle of orthonormal frames over M where O(n+1) is the orthogonal group. Let $\gamma \colon [0, 1] \to M$ be a closed piecewise differentiable curve starting and ending at m. Let τ_{γ} denote parallel translation around γ with respect to the Riemannian connection. The holonomy group at m of the Riemannian connection is denoted by Φ_m and defined by

Presented to the Society, January 23, 1968 under the title A note on flat manifolds; received by the editors February 26, 1968.

¹ This research has been supported in part by NSF grant GP-6560.

$$\Phi_m = \{ g \in O(n+1) \mid pg = \tau_{\gamma}(p) \text{ for some } \gamma \}.$$

The statement that $(m, e'_0, \dots, e'_n) = (m, e_0, \dots, e_n)g$ will be denoted by $e'_i = ge_i$, and γ^* is our notation for the tangent vector field to γ .

Let M_m denote the tangent space at m. A tensor field h of type (1, 1) is said to be *cyclic* if and only if the minimal and characteristic polynomials of h are identical. Thus if it is assumed that h is non-singular at a point then there exists a generator $e_0 \in M_m$ such that $\{h^i e_0: 0 \le i \le n\}$ is a basis of M_m .

Finally, it should be remarked that if h is singular at a point, then at this point a nonsingular tensor field h^* can be found such that $\nabla_X h = \nabla_X h^*$ for every vector field X. The tensor field h^* is obtained by setting $h^* = h + \alpha I$, where α is a suitable nonzero constant.

3. Some properties of the holonomy group.

THEOREM 3.1. If there exists on M a cyclic tensor field h of type (1, 1) with generator e_0 at $m \in M$ such that

$$\{e_i = h^i e_0 \mid i = 0, 1, \cdots, n\}$$

is a basis of the tangent space M_m at m, and if $\nabla_X h = 0$ for every vector field X, then ge_0 is also a generator for h for every $g \in \Phi_m$.

PROOF. Let $Y_i(t)$, $i=0, 1, \dots, n$ be parallel vector fields along γ with $Y_i(0) = e_i$ and $Y_i(1) = e_i'$; that is, $\nabla_{\gamma^*} Y_i = 0$ and $Y_i(0) = e_i$, and hence $Y_i(1) = e_i'$. It should first be observed that $h Y_0$ is parallel along γ since

$$\nabla_{\gamma \bullet} h Y_0 = (\nabla_{\gamma \bullet} h) Y_0 + h(\nabla_{\gamma \bullet} Y_0) = 0.$$

Now $hY_0(0) = he_0 = e_1$ and hence by the uniqueness of solutions of the differential equations $\nabla_{\gamma^*}hY_0 = 0$, $hY_0(1) = Y_1(1) = e_i'$. One can then proceed inductively. If $h^{i-1}Y_0$ is parallel, then $\nabla_{\gamma^*}h^iY_0 = (\nabla_{\gamma^*}h)h^{i-1}Y_0 + h(\nabla_{\gamma^*}h^{i-1}Y_0) = 0$. Now $h^iY_0(0) = e_i$ and therefore by the uniqueness of solutions $h^iY_0(1) = Y_i(1)$. Hence $Y_0(1) = ge_0$ is a generator for every $g \in \Phi_m$.

LEMMA 3.2. If there exists on M a cyclic tensor field h of type (1, 1) such that $\nabla_X h = 0$ for every vector field X, then the coefficients of the characteristic polynomial of h are constant.

PROOF. Note first that $\nabla_X h^i = 0$ for any nonnegative integer i and any vector field X. If the vector field X_0 is a generator for h and if h has a characteristic polynomial

$$h^{n+1}=a_0I+a_1h+\cdots+a_nh^n,$$

then $\nabla_X h^{n+1} X_0 - h^{n+1} \nabla_X X_0 = (\nabla_X h^{n+1}) X_0 = 0$. Denote $h^i X_0$ by X_i and observe that $\{X_i : 0 \le i \le n\}$ is a basis of vector fields. A short calculation will then establish the result that

$$\nabla_{\mathbf{X}} h^{n+1} X_0 = \sum_{i=0}^n (X a_i) X_i + h^{n+1} \nabla_{\mathbf{X}} X_0,$$

and consequently that $\sum_{i=0}^{n} (Xa_i)X_i = 0$. Hence $X(a_i) = 0$ implies a_0, a_1, \dots, a_n are all constant.

COROLLARY. If there exists on M a tensor field h of type (1, 1) with distinct eigenvalues $\lambda_0, \dots, \lambda_n$ such that $\nabla_X h = 0$ for every vector field X, then the eigenvalues $\lambda_0, \dots, \lambda_n$ are all constant.

The corollary follows immediately from the facts that any h with distinct eigenvalues is necessarily cyclic and that the coefficients a_i of the characteristic polynomial of h are symmetric functions of the eigenvalues.

THEOREM 3.3. If there exists on M a tensor field h of type (1, 1) with distinct eigenvalues $\lambda_0, \dots, \lambda_n$ with corresponding eigenvectors $\{e_i\}$ at $m \in M$, and if $\nabla_X h = 0$ for every vector field X, then $\{g_{e_i}\}$ is also a set of eigenvectors of h for every $g \in \Phi_m$, and moreover g is a diagonal matrix with elements +1 or -1 on the main diagonal.

PROOF. Let $Y_i(t)$ be vector fields as in the proof of Theorem 3.1 and compute $\nabla_{x^*}h Y_i$. One obtains the result that

$$\nabla_{\mathbf{v}} h Y_i = (\nabla_{\mathbf{v}} h) Y_i + h(\nabla_{\mathbf{v}} Y_i) = 0$$

and hence hY_i is parallel along γ . Now $hY_i(0) = he_i = \lambda_i e_i = \lambda_i Y_i(0)$, but the eigenvalues λ_i are constant so that $he'_i = \lambda_i e'_i$ where $e'_i = Y_i(1)$, and $Y_i(1)$, by our choice, is ge_i . Finally, since the λ_i are also eigenvalues for e_i , g must be a diagonal matrix with elements +1 or -1 on the main diagonal.

If h satisfies the additional condition that its Lie derivative vanishes, then M is flat. This fact is proved in the following theorem.

THEOREM 3.4. If there exists on M a cyclic tensor field h of type (1, 1) such that $\nabla_X h = \mathcal{L}_X h = 0$ for every vector field X, then M is flat.

PROOF. It should first be observed that

$$(\mathfrak{L}_X h) Y = 0 = (\nabla_X h) Y + h(\nabla_h Y X) - \nabla_h Y X$$

for any vector fields X and Y, and hence $\nabla_{hY}X = h\nabla_YX$. If X_0 is a generator for h, let $X_i = h^iX_0$ so that the set $\{X_0(m), \dots, X_n(m)\}$

is a basis of M_m . It is clear that $[X_i, X_j] = -h^{i+j} \mathcal{L}_{X_0} X_0 = 0$, and hence

$$R(X_i, X_j)X_k = \nabla_{X_i}\nabla_{X_j}X_k - \nabla_{X_j}\nabla_{X_i}X_k$$

$$= h^i\nabla_{X_0}(h^{j+k}\nabla_{X_0}X_0) - h^j\nabla_{X_0}(h^{i+k}\nabla_{X_0}X_0)$$

$$= 0,$$

which completes the proof of the theorem.

It should be remarked that Theorem 3.4 remains valid if the hypothesis that h is cyclic is replaced by the hypothesis that h has distinct eigenvalues.

REFERENCES

- 1. Y. Hatakeyama, On the integrability of a structure defined by two semi-simple O-deformable vector 1-forms which commute with each other, Tohoku Math. J. (2) 17 (1965), 171-177.
 - 2. N. Jacobson, Lectures in linear algebra, Van Nostrand, Princeton, N. J., 1953.
- 3. E. T. Kobayashi, A remark on the Nijenhuis tensor, Pacific J. Math. 12 (1962), 963-977.
- 4. A. Nijenhuis and W. B. Woolf, Some integration problems in almost complex manifolds, Ann. of Math. 77 (1963), 424-489.
- 5. A. P. Stone, Generalized conservation laws, Proc. Amer. Math. Soc. 18 (1967), 868-873.

MICHIGAN STATE UNIVERSITY AND UNIVERSITY OF ILLINOIS AT CHICAGO