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1. Introduction. There has recently been considerable interest in

manifolds carrying a tensor field h of type (1,1) which satisfies cer-

tain conditions. The reader should see any of the references [l], [3],

[4], or [5] listed at the end of this paper. A typical restriction is that

h satisfies some algebraic condition, such as the assumption that h

has distinct eigenvalues. Integrability conditions on h constitute yet

another class of restrictions that might be imposed. For example,

one might require either that the Nijenhuis tensor [h, h] be zero or

the stronger condition that h has a vanishing covariant derivative

with respect to any vector field.

In this paper some properties of the holonomy group of a manifold

with certain structures are proved. One such result is contained in

Theorem 3.1 where it is assumed that there is a cyclic h with the

property that VxA = 0 for every vector field X. It is then shown that

if e0 is a generator for h, then elements of the holonomy group give

rise to other generators for h. If the additional restriction that h has

a vanishing Lie derivative is imposed, then Theorem 3.4 yields the

result that the manifold is flat.

2. Notation and definitions. Let M be a Riemannian manifold of

dimension (n + 1). Covariant differentiation with respect to the Rie-

mannian connection on M will as usual be denoted by V, and £

will denote Lie differentiation. The manifold M is said to be flat if

and only if the curvature R vanishes; that is, if and only if

R(X, Y)Z = VxVyZ - VrVxZ - Vix.y]Z = 0

for any three vector fields X, Y and Z on M.

The holonomy group on M is defined as follows. Let mEM and

p = (m, e0, ■ ■ ■ , en)EF(M), the principal 0(n + l)-bundle of ortho-

normal frames over M where 0(n + l) is the orthogonal group. Let

7: [O, l]—»if be a closed piecewise differentiable curve starting and

ending at m. Let ry denote parallel translation around 7 with respect

to the Riemannian connection. The holonomy group at m of the Rie-

mannian connection is denoted by <l?m and defined by
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$m = {g G 0(« + 1) | pg = Ty(j>) for some 7}.

The statement that im, e¡, • ■ -,<?„') = im, e0, • • • , en)g will be de-

noted by e{ =gei, and 7* is our notation for the tangent vector field

to 7.

Let Mm denote the tangent space at m. A tensor field ft of type

(1, 1) is said to be cyclic if and only if the minimal and characteristic

polynomials of ft are identical. Thus if it is assumed that ft is non-

singular at a point then there exists a generator e0EMm such that

{ft'e0: O^i^n} is a basis of Mm.

Finally, it should be remarked that if ft is singular at a point, then

at this point a nonsingular tensor field ft* can be found such that

Vxft = Vxft* for every vector field X. The tensor field ft* is obtained

by setting h* = h-\-aI, where a is a suitable nonzero constant.

3. Some properties of the holonomy group.

Theorem 3.1. // there exists on M a cyclic tensor field ft of type

(1,1) with generator e0atmEM such that

{«< = h{e0\ i = 0, 1, • • • , n}

is a basis of the tangent space Mm at m, and if Vxh = 0 for every vector

field X, then geo is also a generator for h for every g £$>,»•

Proof. Let Yiit), * = 0, 1, • • • , » be parallel vector fields along 7

with F,(0)=e,and Yt(l)-el; that is, V7.7, = 0 and F<(0)-«<, and
hence F,(l) =el. It should first be observed that ft Yo is parallel along

*v since
Vv.ftF0 = (V7.ft)F0 + h(Vr.F0) = 0.

Now h F*o(0) = he0 = ei and hence by the uniqueness of solutions of the

differential equations V7*hF0 = 0, h70(l)= Fi(l)=ei. One can then

proceed inductively. If hi~1Y0 is parallel, then Vyth'Yo

= (V7.h)/ii-1Fo+h(VY.h<-1F0)=0. Now h<F0(0)=Ci and therefore

by the uniqueness of solutions ¿i'Fo(l) = F<(1). Hence F0(l)=g«o is

a generator for every g £<£»,.

Lemma 3.2. If there exists on M a cyclic tensor field h of type (1, 1)

such that Vxh = Ofor every vector field X, then the coefficients of the char-

acteristic polynomial of h are constant.

Proof. Note first that Vx/i' = 0 for any nonnegative integer i

and any vector field X. If the vector field Xa is a generator for h and

if h has a characteristic polynomial

h"+1 = aol + a{h. + ■ ■ • + a„hn,
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then Vxh»+1X0-hn+1VxX0 = (Vxh"+1)X0 = 0. Denote frX» by Xt

and observe that {A^Ogign} is a basis of vector fields. A short

calculation will then establish the result that

VxA»+iX„ = T (Xai)Xi + h»+lVxX0,

and consequently that TX-o (Ara,)X¿ = 0. Hence X(o,)=0 implies

a0, ay • • • , an are all constant.

Corollary. If there exists on M a tensor field h of type (1, 1) with

distinct eigenvalues X0, • • • , X„ such that Vxh = 0 for every vector field

X, then the eigenvalues Xo, • • • , X„ are all constant.

The corollary follows immediately from the facts that any h with

distinct eigenvalues is necessarily cyclic and that the coefficients a,-

of the characteristic polynomial of h are symmetric functions of the

eigenvalues.

Theorem 3.3. If there exists on M a tensor field h of type (1, 1) with

distinct eigenvalues Xo, • • • , X„ with corresponding eigenvectors {e,} at

mEM, and if Vxh = 0 for every vector field X, then {ge¡} is also a set

of eigenvectors of h for every gE$m, and moreover gis a diagonal matrix

with elements +1 or —1 on the main diagonal.

Proof. Let Yi(t) be vector fields as in the proof of Theorem 3.1 and

compute Vy*h F,-. One obtains the result that

VyhYi = (Vyh)Yi + h(Vy*Yi) = 0

and hence hY( is parallel along y. Now AF,(0) =Ae< = X<e, = X,F,(0),

but the eigenvalues X< are constant so that heí =X¿e/ where c/ = F,(l),

and Fj(l), by our choice, is ge¿. Finally, since the X< are also eigen-

values for e(, g must be a diagonal matrix with elements +1 or — 1

on the main diagonal.

If h satisfies the additional condition that its Lie derivative van-

ishes, then M is flat. This fact is proved in the following theorem.

Theorem 3.4. If there exists on M a cyclic tensor field h of type (1, 1)

such that Vxh = £xh = 0 for every vector field X, then M is flat.

Proof. It should first be observed that

(£xh) F = 0 = (Vx/i) F + h(VhrX) - VhrX

for any vector fields X and Y, and hence VhYX = hVYX. If X0 is a

generator for h, let Xi = hiX0 so that the set {A'o(m), • • ■ , X„(m)}
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is a basis of Mm. It is clear that [Xi, Xj] = —hi+3'£x0Xo = 0, and hence

RiXi, Xj)Xk = VXiVXiXk - VxjVx^k

= ft'Vx.iA^Vx.Ao) - ft'Vx0(ft<+*Vx0A0)

= 0,

which completes the proof of the theorem.

It should be remarked that Theorem 3.4 remains valid if the hy-

pothesis that ft is cyclic is replaced by the hypothesis that ft has dis-

tinct eigenvalues.
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