3-MANIFOLDS FIBERING OVER S¹ WITH NONUNIQUE CONNECTED FIBER

JEFFREY L. TOLLEFSON¹

The purpose of this note is to show that even in a class of very simple Seifert spaces fibered over the circle in the sense of Stallings [3], the fiber is not unique. The examples presented are 3-manifolds of the form $T(g) \times S^1$ where T(g) denotes a closed connected orientable 2-manifold of genus $g, g \ge 2$. In particular we show that each of these manifolds fiber over the circle in an infinite number of essentially distinct ways.

THEOREM. Let $g \ge 2$. For every integer $n \ge 0$ there is a fibering of $T(g) \times S^1$ over the circle with fiber T(m) where m = g + n(g - 1).

PROOF. Assume T(m) is in 3-space with n+1 handles of genus g-1 symmetric about one hole as pictured below for the case when g=3 and n=2, i.e. T(7).

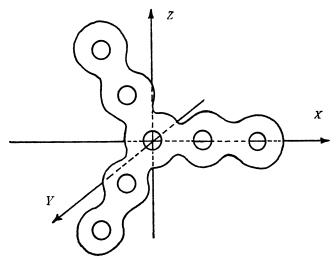


FIGURE 1

Let $h: T(m) \to T(m)$ be the homeomorphism given by a rotation of $2\pi/n+1$ degrees about the y-axis. h generates a free cyclic group action on T(m) of order n+1. Let M be the 3-manifold obtained from $T(m) \times I$ by pasting the boundary components $T(m) \times \{0\}$ and $T(m) \times \{1\}$ together by the homeomorphism h, or equivalently, let $M = T(m) \times R/\{(x, t) \sim (h(x), t+1)\}$ where R denotes the real num-

Received by the editors June 3, 1968.

¹ The author was supported by a NASA Traineeship.

bers. Write points of M as [x, t]. We wish to define a free SO(2) action on M. Consider SO(2) as R/Z with elements written as [s] for $s \in R$. Define an action of SO(2) on M by

$$[s] \times [x, t] \rightarrow [x, t + (n+1)s].$$

It is easy to check that this is a well-defined free action.

By [1, Theorem 2] M is homeomorphic to a manifold \overline{M} with a standard SO(2) action $\{b; (0, g, 0, 0)\}$ where g denotes the genus of the orbit space $\overline{M}/\mathrm{SO}(2)$. Briefly \overline{M} can be described as follows. Let SO(2) operate on $T(g) \times S^1$ by

$$e^{i\phi} \times (m \times e^{i\psi}) \rightarrow (m \times e^{i\phi} e^{i\psi}).$$

Remove an invariant tubular neighborhood generated by the interior of a closed disk neighborhood D in T(g). Now equivariantly sew the solid torus $D \times S^1$ back in by a homeomorphism matching principal orbits but sending a cross-section meridian m on $D \times S^1$ to a cross-sectional curve q on $\mathrm{Bd}(T(g) \times S^1 - D \times S^1)$ satisfying the homology relation $q \sim m' + bh$ where h is a principal orbit and m' a meridianal curve. The resulting space is \overline{M} with the standard action.

Using Van Kampen's theorem we find that $H_1(\overline{M}, Z) = \bigoplus_{2g} Z \bigoplus Z_b$ where $Z_b = (x: x^b = 1)$. Moreover Z_b is generated by a principal orbit h. But \overline{M} fibers over the circle if and only if the order of the element in $H_1(\overline{M}; Z)$ represented by a principal orbit is infinite [2, Satz 8]. By the original construction of M it is clear that M, and hence \overline{M} , fibers over the circle. Therefore we must have b = 0. This proves the theorem since $\{0; (0, g, 0, 0)\}$ is precisely $T(g) \times S^1$.

An interesting result on groups follows immediately. From the fibering over S^1 of $T(g) \times S^1$ with fiber T(m), m = g + n(g - 1), we get the exact sequence

$$0 \to \pi_1(T(m)) \to \pi_1(T(g) \times S^1) \to \pi_1(S^1) \to 0.$$

Let $G(g) = \pi_1(T(g)) = (x_1, \dots, x_{2g}: [x_1, x_2][x_3, x_4] \dots [x_{2g-1}, x_{2g}] = 1)$. Then for every $n \ge 0$ we have G(m) contained in $G(g) \times Z$ as a normal subgroup such that $G(g) \times Z/G(m) = Z$.

REFERENCES

- 1. P. Orlik and F. Raymond, Actions of SO(2) on 3-manifolds, Proceedings of the Conference on Transformation Groups (to appear).
- 2. P. Orlik, E. Vogt and H. Zieschang, Zur Topologie gefaserter dreideimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64.
- 3. J. Stallings, "On fibering certain 3-manifolds" in Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962, 95-100.

Michigan State University and Tulane University