DECOMPOSITION THEOREMS FOR VECTOR MEASURES

JAMES K. BROOKS

1. Introduction. In this note we consider two theorems for vector measures, each of which is a generalization of a well-known theorem for scalar measures. Theorem 1 extends the Yosida-Hewitt theorem [7], [4, p. 163], which states that a bounded real valued finitely additive (f.a.) measure defined on a Boolean algebra can be decomposed uniquely into a countably additive (c.a.) part and a purely finitely additive (p.f.a.) part. The second theorem, due to Rickart [6, Theorem 4.5], is a Lebesgue decomposition theorem for c.a. vector measures with respect to an outer measure. Several authors have given alternate proofs of a restricted form of this theorem (e.g. see [3, p. 189] where the outer measure is replaced by a measure and the total variation of the vector measure is assumed to be finite—a condition not generally satisfied). In 3 we give a short and elementary proof of Rickart's theorem, which represents a considerable simplification of the existing proofs of this result.

Let X be a Banach space over the reals R with first and second conjugate spaces X^* and X^{**} ; we regard X as a subset of X^{**} . Σ_0 and Σ respectively denote a Boolean algebra and a σ -algebra of subsets of a set S. $||\mu||$ denotes the semivariation [3, p. 51] of μ . μ is bounded if $||\mu||(S) < \infty$.

2. THEOREM 1. Let $\mu: \Sigma_0 \to X$ be bounded and finitely additive. Then μ can be written uniquely in the form $\mu = \mu_1 + \mu_2$, where the $\mu_i: \Sigma_0 \to X^{**}$ are finitely additive and for each $f \in X^*: (1)\mu_1(\cdot)f: \Sigma_0 \to R$ is countably additive and $(2) \mu_2(\cdot)f: \Sigma_0 \to R$ is purely finitely additive.

PROOF. For $f \in X^*$ the set function $f\mu$ defined by $(f\mu)(E) = f(\mu(E))$, $E \in \Sigma_0$ is f.a. Moreover, since $|f\mu(E)| \le ||f|| ||\mu(E)|| \le ||f|| ||\mu|| (S)$, $f\mu$ is bounded. By the Yosida-Hewitt theorem $f\mu = \mu_{f,1} + \mu_{f,2}$, where $\mu_{f,1}$ is c.a. and $\mu_{f,2}$ is p.f.a. For $E \in \Sigma_0$ define $F_{i,E} : X^* \to R$, i = 1, 2, as follows: $F_{i,E}(f) = \mu_{f,i}(E)$, $f \in X^*$. It follows from the uniqueness of the decomposition of the scalar measures and Theorem 1.17 in [7] that $\mu_{\alpha f,i} = \alpha \mu_{f,i}$ and $\mu_{f+g,i} = \mu_{f,i} + \mu_{g,i}$, for $f, g \in X^*$, $\alpha \in R$; hence $F_{i,E}$ is linear on X^* . To show that $F_{i,E} \in X^{**}$, let $f \in X^*$ and let $f\mu = (f\mu)^+ - (f\mu)^-$, $|f\mu| = (f\mu)^+ + (f\mu)^-$ be the Jordan decomposition of $f\mu$. Again using the uniqueness of the decomposition of $f\mu$, we have $u_{f,i} = (f\mu)_i^+ - (f\mu)_i^-$ where the subscripts refer to the c.a. and p.f.a. parts. $|F_{i,E}(f)|$

 $= |\mu_{f,i}(E)| \leq (f\mu)_i^+(E) + (f\mu)_i^-(E) \leq (f\mu)^+(E) + (f\mu)^-(E) = |f\mu| |(E)$ $\leq 2 \sup_{A \subseteq E} |f\mu(A)| \leq 2 \sup_{A \subseteq E} ||f|| ||\mu(A)|| \leq 2||f|| ||\mu|| |(E)|. \text{ Thus } ||F_{i,E}||$ $\leq 2||\mu|| |(E)| \text{ and } F_{i,E} \subset X^{**}. \text{ Define } \mu_i(E) = F_{i,E}, E \subset \Sigma_0. \text{ It is clear from the construction that } \mu_1 \text{ and } \mu_2 \text{ have the required properties.}$

COROLLARY. Assume X is reflexive and $\mu: \Sigma \to X$ is bounded and finitely additive. Then μ can be written uniquely in the form $\mu = \mu_1 + \mu_2$, $\mu_i: \Sigma \to X$, where (1') μ_1 is countably additive and (2') $f\mu_2$ is purely finitely additive for each $f \in X^*$.

PROOF. Let μ_i be the components of μ given in the above theorem. Since $f\mu_1(\cdot) = \mu_1(\cdot)f$ is c.a. for $f \in X^*$, μ_1 is weakly countably additive in addition to being f.a. By the Pettis theorem [4, p. 318] μ_1 is c.a., and the result follows.

REMARK. For a reflexive space X, the existence of a large number of bounded f.a. X-valued measures on Σ , hence measures satisfying (2'), can be deduced as follows. Let $Y = M_X * (\Sigma)$ be the Banach space of totally measurable X^* -valued functions (i.e. uniform limits of simple functions) with the uniform norm. Since Y^* is isomorphic to the set of all f.a. X-measures on Σ having finite total variation [2], the Hahn-Banach theorem implies that for each $0 \neq g \in Y$ and $\alpha \in R$, there exists a f.a. X-measure μ such that $\int_S g d\mu = \alpha$, where the integral is defined in [3].

3. The Lebesgue decomposition. Definitions. Let β be an outer measure defined on Σ . Then $\mu: \Sigma \to X$ is β -continuous if $\beta(E) \to 0$ implies $\mu(E) \to 0$. μ is β -singular if there exists an $E^* \in \Sigma$ such that $\beta(E^*) = 0$ and $\mu(E) = \mu(E \cap E^*)$, $E \in \Sigma$.

THEOREM 2. Let $\mu: \Sigma \to X$ be countably additive and let β be an outer measure defined on Σ . Then μ can be decomposed uniquely into the form $\mu = \mu_1 + \mu_2$, where μ_1 and μ_2 are countably additive, μ_1 is β -continuous, and μ_2 is β -singular.

PROOF. The uniqueness of μ_1 and μ_2 is obvious. By a theorem due to Bartle, Dunford, and Schwartz [1], there exists a finite nonnegative c.a. measure λ defined on Σ such that μ is λ -continuous (see [5] for an elementary proof of this result). λ can be decomposed uniquely into a β -continuous part λ_c and a β -singular part λ_s . This can be seen by examining the proof of the classical Lebesgue decomposition theorem in [4, p. 132]. The argument used there remains valid if the appropriate measure appearing in the proof is replaced by an outer measure. Consequently, there exists a set $E^* \subset \Sigma$ such that $\beta(E^*) = 0$ and $\lambda_s(E) = \lambda(E \cap E^*)$, $\lambda_c(E) = \lambda(E \cap (S - E^*))$. Let $\mu_1(E)$

 $=\mu(E\cap(S-E^*))$ and $\mu_2(E)=\mu(E\cap E^*)$. Obviously μ_2 is β-singular. Now if $\beta(E_n)\to 0$, then $\lambda(E_n\cap(S-E^*))=\lambda_c(E_n)\to 0$; hence $\mu_1(E_n)=\mu(E_n\cap(S-E^*))\to 0$, and μ_1 is β-continuous. The conclusion of the theorem now follows.

ADDED IN PROOF. The classical Lebesgue decomposition theorem (even with respect to an outer measure) can be proved in a straightforward fashion that avoids the Radon-Nikodym theorem. This method was used by the author to decompose set functions of a more general type than the ones considered here (cf. An integration theory for set-valued measures. I, Bull. Soc. Roy. Sci. Liège, no5-8 (1968), 312-319). We shall sketch the proof. Let λ and β be as in the above proof. Define $\mathfrak{N} = \{E \in \Sigma : \beta(E) = 0\}$; $\eta = \sup \lambda(E)$, $E \in \mathfrak{N}$. By using the method of exhaustion, one can construct a set E^* such that $E^* \in \mathfrak{N}$ and $\lambda(E^*) = \eta$. It follows that if $E \in \mathfrak{N}$, then $\lambda(E - E^*) = 0$. Then define λ_{ϵ} and λ_{ϵ} to be the restrictions of λ to E^* and $S - E^*$ respectively.

BIBLIOGRAPHY

- 1. R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
- 2. N. Dinculeanu, Linear operations on spaces of totally measurable functions, Rev. Roumaine Math. Pures Appl. 10 (1965), 1493-1524.
 - 3. ——, Vector measures, Pergamon Press, New York, 1967.
- 4. N. Dunford and J. Schwartz, Linear operators, Part I: General theory, Interscience, New York, 1958.
- 5. G. Gould, Integration over vector-valued measures, Proc. London Math. Soc. 15 (1965), 193-225.
- 6. C. E. Rickart, Decomposition of additive set functions, Duke Math. J. 10 (1943), 653-665
- 7. K. Yosida and E. Hewitt, *Finitely additive measures*, Trans. Amer. Math. Soc. 72 (1952), 46-66.

University of Florida