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1. Introduction. In this note we consider two theorems for vector

measures, each of which is a generalization of a well-known theorem

for scalar measures. Theorem 1 extends the Yosida-Hewitt theorem

[7], [4, p. 163], which states that a bounded real valued finitely

additive (f.a.) measure defined on a Boolean algebra can be decom-

posed uniquely into a countably additive (c.a.) part and a purely

finitely additive (p.f.a.) part. The second theorem, due to Rickart

[6, Theorem 4.5], is a Lebesgue decomposition theorem for c.a.

vector measures with respect to an outer measure. Several authors

have given alternate proofs of a restricted form of this theorem (e.g.

see [3, p. 189] where the outer measure is replaced by a measure and

the total variation of the vector measure is assumed to be finite—a

condition not generally satisfied). In 3 we give a short and elementary

proof of Rickart's theorem, which represents a considerable simplifi-

cation of the existing proofs of this result.

Let X be a Banach space over the reals R with first and second

conjugate spaces X* and X**; we regard X as a subset of X**. 20

and 2 respectively denote a Boolean algebra and a o--algebra of sub-

sets of a set S. \\u\\ denotes the semivariation [3, p. 51] of u. u is

bounded if ||ju||(5)< 00.

2. Theorem 1. Let u: S0—*X be bounded and finitely additive. Then

u can be written uniquely in the form m=Mi+M2, where the pa: ~E0~^X**

are finitely additive and for each f EX*: (1)mi(')/: 20—>R is countably

additive and (2) Uii-)f: 20—># is purely finitely additive.

Proof. For/EX* the set function fu defined by (Jn)(E) =/(/*(£)),

£GSo is f.a. Moreover, since \fp(E)\ è\\f\\ \\p(E)\\ g||/|| \\u\\iS),fu is

bounded. By the Yosida-Hewitt theorem /M = r1/,i+M/,2, where tt/,i is

c.a. and/i/,2 is p.f.a. For EE20 define F<,B: X*—*R, i = l,2, as follows:

Fi.Eif) =Hf.iiE),fEX*. It follows from the uniqueness of the decom-

position of the scalar measures and Theorem 1.17 in [7] that tt„/,¡

=anf,i and M/+e.i=M/,«+M<>.«> for/, gEX*, aER; hence FJljB is linear

on X*. To show that FitEEX**, let f EX* and let fp = ifß)+-(fp)-,
\fu\ = (fu)+-\- ifu)~ be the Jordan decomposition of /it. Again using the

uniqueness of the decomposition of fu, we have íí/,í = ifu)f — ifu)~

where the subscripts refer to the c.a. and p.f.a. parts.  \ Fí,e(J)\
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= |m/,.(£)| ^(/m)4+(£) +(fß)r(E) Ú(fu)+(E) +(fß)~(E) = \fß\(E)
g 2 sup,çB \fß(A)\ g2 supA£E\\f\\ \\ß(A)\\^2\\f\\ \\ß\\(E). Thus||F,-.B||
á2||íi||(£) and FilEEX**. Define ßi(E) = Fi,B, EE^o- It is clear

from the construction that ßi and ß2 have the required properties.

Corollary. Assume X is reflexive and ß:Hi—*X is bounded and

finitely additive. Then ß can be written uniquely in the form ß=ßi+ß2,

ßi:2—*X, where (V) ßi is countably additive and (2') fß2 is purely

finitely additive for each f EX*.

Proof. Let ßi be the components of ß given in the above theorem.

Since fßi(-) =ßi(-)f is ca. lor f EX*, ßi is weakly countably additive

in addition to being f.a. By the Pettis theorem [4, p. 318] Mi is c.a.,

and the result follows.

Remark. For a reflexive space X, the existence of a large number

of bounded f.a. .XT-valued measures on 2, hence measures satisfying

(2'), can be deduced as follows. Let Y = Afx*(2) be the Banach space

of totally measurable X*-valued functions (i.e. uniform limits of

simple functions) with the uniform norm. Since Y* is isomorphic to

the set of all f.a. X-measures on 2 having finite total variation [2],

the Hahn-Banach theorem implies that for each O^gEY and aE&,

there exists a f.a. X-measure ju such that fsgdß = a, where the integral

is defined in [3].

3. The Lebesgue decomposition. Definitions. Let ß be an outer

measure defined on 2. Then ß: 2—>.X" is ß-continuous if ß(E)—»0 im-

plies ß(E)—*0. ß is ß-singular il there exists an E*£2 such that:

ß(E*) =0 and ß(E) =ß(EC\E*), ££2.

Theorem 2. Let ju: 2—>X be countably additive and let ß be an outer

measure defined on 2. Then ß can be decomposed uniquely into the form

ß = ßi+ß2, where ßX and ß2 are countably additive, ßi is ß-continuous,

and ß2 is ß-singular.

Proof. The uniqueness of ßi and ß2 is obvious. By a theorem due

to Bartle, Dunford, and Schwartz [l ], there exists a finite nonnegative

c.a. measure X defined on S such that ß is X-continuous (see [5] for

an elementary proof of this result). X can be decomposed uniquely

into a (8-continuous part \c and a /3-singular part X,. This can be seen

by examining the proof of the classical Lebesgue decomposition theo-

rem in [4, p. 132]. The argument used there remains valid if the

appropriate measure appearing in the proof is replaced by an outer

measure. Consequently, there exists a set £*(E2 such thatß(E*) =0

and   \,(E) = X(£ C\ E*),    \C(E) = X(£ n (S - £*)).   Let   ßi(E)



1969] DECOMPOSITION THEOREMS FOR VECTOR MEASURES 29

=HÍEniS-E*)) and HiiE)=niEnE*). Obviously u2 is 0-singular.
Now if /3(£»)-»0, then A(£„n(5-£*)) =Xc(£„)-»0; hence ttiCE«)
=ju(£„r^(5 — £*))—>0, and iti is ^-continuous. The conclusion of the

theorem now follows.

Added in proof. The classical Lebesgue decomposition theorem

(even with respect to an outer measure) can be proved in a straight-

forward fashion that avoids the Radon-Nikodym theorem. This

method was used by the author to decompose set functions of a more

general type than the ones considered here (cf. An integration theory

for set-valued measures. I, Bull. Soc. Roy. Sei. Liège, no5-8 (1968),

312-319). We shall sketch the proof. Let X and ß be as in the above

proof. Define 9?= {££2: ß(E) =0} ; i?=suPX(£), EEVI. By using
the method of exhaustion, one can construct a set E* such that £*£9t

and X(£*) =v. It follows that if EE% then X(£-£*) =0. Then de-

fine X, and Xc to be the restrictions of X to £* and S — E* respectively.

Bibliography

1. R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector mea-

sures, Canad. J. Math. 7 (1955), 289-305.
2. N. Dinculeanu, Linear operations on spaces of totally measurable functions, Rev.

Roumaine Math. Pures Appl. 10 (1965), 1493-1524.
3. -, Vector measures, Pergamon Press, New York, 1967.

4. N. Dunford and J. Schwartz, Linear operators, Part I: General theory, Inter-

science, New York, 1958.

5. G. Gould, Integration over vector-valued measures, Proc. London Math. Soc. 15

(1965), 193-225.
6. C. E. Rickart, Decomposition of additive set functions, Duke Math. J. 10 (1943),

653-665.
7. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc.

72 (1952), 46-66.

University of Florida


