DECOMPOSITION THEOREMS FOR VECTOR MEASURES
JAMES K. BROOKS

1. Introduction. In this note we consider two theorems for vector
measures, each of which is a generalization of a well-known theorem
for scalar measures. Theorem 1 extends the Yosida-Hewitt theorem
[7], [4, p. 163], which states that a bounded real valued finitely
additive (f.a.) measure defined on a Boolean algebra can be decom-
posed uniquely into a countably additive (c.a.) part and a purely
finitely additive (p.f.a.) part. The second theorem, due to Rickart
[6, Theorem 4.5], is a Lebesgue decomposition theorem for c.a.
vector measures with respect to an outer measure. Several authors
have given alternate proofs of a restricted form of this theorem (e.g.
see 3, p. 189] where the outer measure is replaced by a measure and
the total variation of the vector measure is assumed to be finite—a
condition not generally satisfied). In 3 we give a short and elementary
proof of Rickart’s theorem, which represents a considerable simplifi-
cation of the existing proofs of this result.

Let X be a Banach space over the reals R with first and second
conjugate spaces X* and X**; we regard X as a subset of X**, Z,
and 2 respectively denote a Boolean algebra and a ¢-algebra of sub-
sets of a set S. ||u/| denotes the semivariation [3, p. 51] of p. u is
bounded if ||u/|(S)< o.

2. THEOREM 1. Let p: Z¢— X be bounded and finitely additive. Then
1 can be written uniquely in the form p =+ p,, where the p;: Zy—X**
are finitely additwe and for each fEX*: (V)ui(-)f: Zo—R 1s countably
additive and (2) pa(-)f: Zo— R is purely finitely additive.

ProoF. For f& X* the set function fu defined by (fu)(E) =f(u(E)),
EEZ, is f.a. Moreover, since |fu(E)| <||f|| le@E| = |IAll |l (S), fu is
bounded. By the Yosida-Hewitt theorem fu=p; 14 pus2, where s is
c.a. and py 2 is p.f.a. For EEZ,define F; g: X*—R, i=1, 2, as follows:
Fi.e(f) =py,:(E), fEX*. It follows from the uniqueness of the decom-
position of the scalar measures and Theorem 1.17 in [7] that p.s.;
=apy,; and pryg,i =pys,i+po.i for f, gEX*, aER; hence F; g is linear
on X*. To show that F; g EX**, let fEX* and let fu= (fu)*—(fu)~,
lf#l = (fu)*+ (fu)~ be the Jordan decomposition of fu. Again using the
uniqueness of the decomposition of fu, we have u; ;= (fu); — (fu);
where the subscripts refer to the c.a. and p.f.a. parts. | F;, ()]
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= |w(BE)| SUW{(E) +(w)i (B) < (fw*(E) +(fw)~(E) = |ful (E)
<2 supsce | fu(4)] =2 supace ||fl] ||n(4)]| < 2] ||l (B). Thus || F; &]
<2||u/|(E) and F:zEX**. Define pi(E)=F;r, EEZ,. It is clear
from the construction that u, and p, have the required properties.

CoROLLARY. Assume X is reflexive and p:Z—X is bounded and
finitely additive. Then u can be written uniquely in the form u=pu,+pus,
pi: 2o X, where (1') py is countably additive and (2') fu, is purely
finitely additive for each f & X*.

PRrOOF. Let u; be the components of u given in the above theorem.
Since fui1(+) =pi(-)f is c.a. for fE X*, p, is weakly countably additive
in addition to being f.a. By the Pettis theorem [4, p. 318] p, is c.a.,
and the result follows.

REMARK. For a reflexive space X, the existence of a large number
of bounded f.a. X-valued measures on Z, hence measures satisfying
(2'), can be deduced as follows. Let ¥ = M x*(Z) be the Banach space
of totally measurable X*-valued functions (i.e. uniform limits of
simple functions) with the uniform norm. Since Y* is isomorphic to
the set of all f.a. X-measures on 2 having finite total variation [2],
the Hahn-Banach theorem implies that for each 0#g& Y and a €ER,
there exists a f.a. X-measure p such that [sgdu =a, where the integral
is defined in [3].

3. The Lebesgue decomposition. Definitions. Let 8 be an outer
measure defined on Z. Then u: Z—X is B-continuous if B(E)—0 im-
plies u(E)—0. u is B-singular if there exists an E*EZ such that
B(E*)=0 and u(E) =u(ENE*), EEZ.

THEOREM 2. Let u: Z— X be countably additive and let B be an outer
measure defined on Z. Then p can be decomposed uniquely into the form
B=p1+ps, where py and po are countably additive, w, is B-continuous,
and g 1s B-singular.

Proor. The uniqueness of u; and u. is obvious. By a theorem due
to Bartle, Dunford, and Schwartz [1], there exists a finite nonnegative
c.a. measure A defined on Z such that u is A\-continuous (see [5] for
an elementary proof of this result). A can be decomposed uniquely
into a $-continuous part A, and a S-singular part \,. This.can be seen
by examining the proof of the classical Lebesgue decomposition theo-
rem in [4, p. 132]. The argument used there remains valid if the
appropriate measure appearing in the proof is replaced by an outer
measure. Consequently, there exists a set E*&Z such that 8(E*) =0
and N(E) = MENE*), X\(E) =NEN(S — E*). Let wm(E)
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=u(EN(S—E*)) and me(E) =p(ENE*). Obviously us is B-singular.
Now if B(E,)—0, then ME,N(S—E*))=\.(E,)—0; hence u(E,)
=u(E,N(S—E*))—>0, and p, is B-continuous. The conclusion of the
theorem now follows.

ADDED IN PROOF. The classical Lebesgue decomposition theorem
(even with respect to an outer measure) can be proved in a straight-
forward fashion that avoids the Radon-Nikodym theorem. This
method was used by the author to decompose set functions of a more
general type than the ones considered here (cf. An integration theory
for set-valued measures. 1, Bull. Soc. Roy. Sci. Liége, no5-8 (1968),
312-319). We shall sketch the proof. Let A and B be as in the above
proof. Define N = {EEE:B(E) =0}; n=supA(E), EEN. By using
the method of exhaustion, one can construct a set E* such that E*&N
and N(E*) =7. It follows that if EEN, then N(E—E*) =0. Then de-
fine N\, and A, to be the restrictions of A to E* and S— E* respectively.
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