SHEAF COHOMOLOGY WITH BOUNDS AND BOUNDED HOLOMORPHIC FUNCTIONS

YUM-TONG SIU

Suppose U is the unit disc in C. For 0 < r < 1 Q_r (or simply Q) is the annulus $\{z \in U \mid |z| > r\}$. A subvariety V of pure codimension 1 in U^N is called a *Rudin subvariety* if for some $r V \cap Q^N = \emptyset$. A Rudin subvariety is called a *special Rudin subvariety* if there is $\delta > 0$ such that, for $1 \le k \le N$, $(z', a_i, z'') \in (Q^{k-1} \times U \times Q^{N-k}) \cap V$, i = 1, 2, and $a_1 \ne a_2$, we have $|a_1 - a_2| \ge \delta$. If a holomorphic function f generates the ideal-sheaf of its zero-set E, then we write Z(f) = E. The Banach space of all bounded holomorphic functions on a reduced complex space X under the sup norm is denoted by $H^{\infty}(X)$ and the norm of $f \in H^{\infty}(X)$ is denoted by $||f||_X$. The following two theorems were proved by W. Rudin [2] and H. Alexander [1] respectively.

THEOREM 1. If V is a Rudin subvariety, then there is $f \in H^{\infty}(U^N)$ such that Z(f) = V.

THEOREM 2. If V is a special Rudin subvariety, then there is a bounded linear map from $H^{\infty}(V)$ to $H^{\infty}(U^N)$ which extends every bounded holomorphic function on V to one on U^N .

Cartan's Theorem B implies that an analytic hypersurface of a polydisc is the zero-set of a holomorphic function and that every holomorphic function on the hypersurface is induced by a holomorphic function on the polydisc. One can expect that some Theorem B with bounds would easily yield the above two theorems. In this note we prove a simple theorem on sheaf cohomology with bounds (Theorem 3 below) which can imply Theorems 1 and 2. This gives us more perspective proofs of these two theorems.

Suppose X is a reduced complex space and \mathcal{O} is the structure-sheaf of $X \times U^N$. Let $W_k = X \times U^{k-1} \times Q \times U^{N-k}$, $1 \leq k \leq N$, and $\mathfrak{W} = \{W_k\}$. For $\nu \geq 0$ and $1 \leq i_0, \dots, i_{\nu} \leq N$ $W_{i_0 \dots i_{\nu}}$ denotes $W_{i_0} \cap \dots \cap W_{i_{\nu}}$. If $f \in C^{\nu}(\mathfrak{W}, \mathfrak{O})$, then $f_{i_0 \dots i_{\nu}} \in \Gamma(W_{i_0 \dots i_{\nu}}, \mathfrak{O})$ denotes the value of f at the simplex $(W_{i_0}, \dots, W_{i_{\nu}})$ of the nerve of \mathfrak{W} . Let $\rho = 2/(1-r)$ and for $1 \leq \nu < N$ let

$$\sigma_{\nu} = \sum_{\mu=1}^{N} {N \choose \mu} (\nu + 1)^{\mu - 1} \rho^{\mu}.$$

Received by the editors March 11, 1968.

LEMMA 1. Suppose f is a bounded holomorphic function on $X \times Q$ whose absolute value is bounded by a positive number K. Suppose for $w \in X f(w, z) = \sum_{\mu=-\infty}^{\infty} h_{\mu}(w) z^{\mu}$ is the Laurent series expansion of f in z (where z is the coordinate function of Q). Let $g(w, z) = \sum_{\mu=0}^{\infty} h_{\mu}(w) z^{\mu}$ on $X \times Q$. Then $||g||_{X \times Q} \leq \rho K$.

PROOF. Fix $(w, z) \in X \times Q$. Choose arbitrarily two positive numbers a and b such that r < a < |z| < b < 1. We need only prove that $|g(w, z)| \le 2bK/(b-a)$, because the result follows then from letting $a \rightarrow r$ and $b \rightarrow 1$.

Case (i).
$$|z| \leq (a+b)/2$$
. Then $|\zeta - z| \geq (b-a)/2$ for $|\zeta| = b$.

$$g(w, z) \mid = \left| \frac{1}{2\pi i} \int_{|\zeta|=b} \frac{f(w, \zeta)}{\zeta - z} d\zeta \right| \leq \frac{2b}{b-a} K.$$

Case (ii). $|z| \ge (a+b)/2$. Then $|\zeta - z| \ge (b-a)/2$ for $|\zeta| = a$.

$$\left|f(w, z) - g(w, z)\right| = \left|\frac{-1}{2\pi i}\int_{|\zeta|=a}\frac{f(w, \zeta)}{\zeta - z}\,d\zeta\right| \leq \frac{2a}{b-a}\,K.$$

Hence $|g(w, z)| \leq 2bK/(b-a)$.

Q.E.D.

THEOREM 3. For $1 \leq \nu < N$ there exists a linear map $\phi_{\nu}: B^{\nu}(\mathfrak{W}, \mathfrak{O}) \rightarrow C^{\nu-1}(\mathfrak{W}, \mathfrak{O})$ over the ring of all holomorphic functions on X such that (i) $\delta \phi_{\nu} =$ the identity map on $B^{\nu}(\mathfrak{W}, \mathfrak{O})$, and

(ii) if $f \in B^{\nu}(\mathfrak{M}, \mathfrak{O})$ and $||f_{i_0\cdots i_{\nu}}||_{W_{i_0}\cdots i_{\nu}} \leq K$ for $1 \leq i_0, \cdots, i_{\nu} \leq N$, then $||(\phi_{\nu}(f))_{i_0\cdots i_{\nu-1}}||_{W_{i_0}\cdots i_{\nu-1}} \leq \sigma_{\nu}K$ for $1 \leq i_0, \cdots, i_{\nu-1} \leq N$.

PROOF. First we define for $1 \leq i \leq N$ and $0 \leq \nu < N$ a linear map $e_i: C^{\nu}(\mathfrak{W}, \mathfrak{O}) \rightarrow C^{\nu}(\mathfrak{W}, \mathfrak{O})$ over the ring of all holomorphic functions on X as follows: Suppose $f \in C^{\nu}(\mathfrak{W}, \mathfrak{O})$. If $f_{i_0 \cdots i_{\nu}} = \sum_{\mu=-\infty}^{\infty} h_{\mu}^{(t_0 \cdots , t_{\nu})} z_i^{\mu}$ is the Laurent series expansion of $f_{i_0 \cdots i_{\nu}}$ in z_i (where z_i is the *i*th coordinate function of U^N), then $(e_i(f))_{i_0 \cdots i_{\nu}} = \sum_{\mu=0}^{\infty} h_{\mu}^{(t_0 \cdots , t_{\nu})} z_i^{\mu}$. By applying Lemma 1 with X replaced by the product of X and U^{N-1} , we have $\|(e_i(f))_{i_0 \cdots i_{\nu}}\|_{W_{i_0} \cdots i_{\nu}} \leq \rho \|f_{i_0 \cdots i_{\nu}}\|_{W_{i_0} \cdots i_{\nu}}$. Observe that $((1-e_i)(f))_{i_0 \cdots i_{\nu}} = 0$ if $i \neq i_0, \cdots, i_{\nu}$. For $0 \leq \nu < N-1$ we have $(1-e_1) \circ (1-e_2) \circ \cdots \circ (1-e_N) = 0$ on $C^{\nu}(\mathfrak{W}, \mathfrak{O})$, because for any $1 \leq i_0, \cdots, i_{\nu} \leq N$ there exists $1 \leq i \leq N$ such that $i \neq i_0, \cdots, i_{\nu}$. Since e_i commutes with δ , for $1 \leq \nu < N$ we have $(1-e_1) \circ (1-e_2) \circ \cdots \circ (1-e_N) = 0$ on $B^{\nu}(\mathfrak{W}, \mathfrak{O})$.

Next we define for $1 \leq i \leq N$ and $1 \leq \nu < N$ a linear map $k_i: C^{\nu}(\mathfrak{W}, \mathfrak{O}) \to C^{\nu-1}(\mathfrak{W}, \mathfrak{O})$ over the ring of all holomorphic functions on X as follows: If $f \in C^{\nu}(\mathfrak{W}, \mathfrak{O})$, then set $(k_i(f))_{i_0 \cdots i_{\nu-1}}$ to be the holomorphic function on $W_{i_0 \cdots i_{\nu-1}}$ whose restriction to $W_{i_{\nu-1}}$ is $(e_i(f))_{i_{\nu-1}}$. Straightforward computation shows that for $1 \leq i \leq N$ and $1 \leq \nu < N$ we have $e_i = \delta k_i - k_i \delta$ on $C^{\nu}(\mathfrak{W}, \mathfrak{O})$. Hence for $1 \leq \nu < N$ we have $(1 - \delta k_1) \circ (1 - \delta k_2) \circ \cdots \circ (1 - \delta k_N) = 0$ on $B^{\nu}(\mathfrak{W}, \mathfrak{O})$. For $1 \leq \nu < N$ define $\phi_{\mathfrak{p}} \colon B^{\mathfrak{p}}(\mathfrak{W}, \mathfrak{O}) \longrightarrow C^{\mathfrak{p}-1}(\mathfrak{W}, \mathfrak{O})$ by

$$\phi_{\nu} = \sum_{\mu=1}^{N} (-1)^{\mu-1} \sum_{i_1 < \ldots < i_{\mu}} k_{i_1} \delta k_{i_2} \cdots \delta k_{i_{\mu}}.$$

Then ϕ_r satisfies the requirement.

and $b \rightarrow 1$ and do not restrict |z| to (a, b).

REMARK. By using $\sup |\operatorname{Ref}_{i_0 \cdots i_p}| \operatorname{on} W_{i_0 \cdots i_p} \operatorname{and} \sup |\operatorname{Re} \phi_r(f)_{i_0 \cdots i_{p-1}}|$ on $W_{i_0 \cdots i_{p-1}}$ instead of using $||f_{i_0 \cdots i_p}||_{W_i_0 \cdots i_p}$ and $||\phi_r(f)_{i_0 \cdots i_{p-1}}||_{W_i_0 \cdots i_{p-1}}$, a theorem similar to Theorem 3 can be proved. We need only prove a lemma which corresponds to Lemma 1 but uses sup norms of the real parts instead. To do this, we observe that $f \mapsto \operatorname{Re} f$ defines a continuous R-linear *injection* with *closed* image from the Fréchet space E of all holomorphic functions on Q whose constant coefficients in the Laurent series expansions are real to the Fréchet space of all harmonic functions on Q. Hence, for r < a < b < 1, there exists a constant C such that, if $f \in E$ and $\sup |\operatorname{Re} f| \leq K$, then $|f(z)| \leq CK$ on $a \leq |z| \leq b$. The desired lemma follows from an argument analogous to the proof of Lemma 1, but this time we leave a and b fixed instead of letting $a \to r$

PROOF OF THEOREM 1. By Cartan's Theorem B there is a holomorphic function \tilde{f} on U^N such that $Z(\tilde{f}) = V$. We can assume $V \cap (Q_{r'})^N = \emptyset$ for some r' < r. We are going to prove $(1)_k$ by induction on k.

On $U^k \times Q^{N-k}$ (and likewise on products obtained by permut-

(1)_k ing the N factors) we can construct a bounded holomorphic function $f^{(k)}$ such that $Z(f^{(k)}) = (U^k \times Q^{N-k}) \cap V$ and $(f^{(k)})^{-1}$ is bounded on Q^N .

 $Q^N \cap V = \emptyset$ implies that $(U \times Q^{N-1}) \cap V$ is an analytic cover over Q^{N-1} of, say, *n* sheets. There exists a proper subvariety A in Q^{N-1} and locally defined holomorphic functions $g^{(1)}, \dots, g^{(n)}$ on Q^{N-1} such that $(U \times (Q^{N-1} - A)) \cap V = \{(z_1, \dots, z_N) \in U \times (Q^{N-1} - A) | z_1 = g^{(i)}(z_2, \dots, z_N) \text{ for some } i\}$. The bounded holomorphic extension $f^{(1)}$ on $U \times Q^{N-1}$ of $\prod_{i=1}^n (z_1 - g^{(i)}(z_2, \dots, z_N))$ satisfies $Z(f^{(1)}) = (U \times Q^{N-1}) \cap V$ and $(f^{(1)})^{-1}$ is bounded on Q^N . (1)₁ is proved. Suppose (1)_k is true for $1 \leq k < m$. Then for $1 \leq i \leq m$ we can construct a bounded holomorphic function f_i on $G_i = U^{i-1} \times Q \times U^{m-i} \times Q^{N-m}$ such that $Z(f_i) = G_i \cap V$ and f_i^{-1} is bounded on Q^N . By replacing f_i by the product of f_i with suitable powers of z_i, z_{m+1}, \dots, z_N , we can assume that we can select a regular branch h_i of $\log(\tilde{f}/f_i)$ on G_i . Since $h_i - h_j$ = a branch of $\log(f_j/f_i)$ has bounded real part on $G_i \cap G_j$, by the Remark following Theorem 3 we can construct holomorphic functions

[April

Q.E.D.

228

 \tilde{h}_i on G_i with bounded real parts such that $\tilde{h}_i - \tilde{h}_j = h_i - h_j = a$ branch of $\log(f_j/f_i)$. The holomorphic function $f^{(m)}$ on $U^m \times Q^{N-m}$ which agrees with $f_i \exp(\tilde{h}_i)$ on G_i satisfies $Z(f^{(m)}) = (U^m \times Q^{N-m}) \cap V$ and is bounded. Moreover, $(f^{(m)})^{-1}$ is bounded on Q^N . (1)_m is proved. The theorem follows from (1)_N. Q.E.D_a

229

PROOF OF THEOREM 2. By Theorem 1 we can construct $g \in H^{\infty}(U^N)$ such that Z(g) = V. The construction implies that g^{-1} is bounded on Q^N . Take $f \in H^{\infty}(V)$. By Cartan's Theorem B f is the restriction to V of a holomorphic function \tilde{f} on U^N . We are going to prove $(2)_k$ by induction on k.

On $U^k \times Q^{N-k}$ (and likewise on products obtained by permut-(2)_k ing the N factors) we can construct a bounded holomorphic function $f^{(k)}$ which agrees with f on $(U^k \times Q^{N-k}) \cap V$.

From the conditions of special Rudin subvarieties we conclude that $(U \times Q^{N-1}) \cap V$ is an unbranched analytic cover over Q^{N-1} of, say, *n* sheets. There are locally defined holomorphic functions $g^{(1)}, \cdots, g^{(n)}$ $g^{(n)}$ on Q^{N-1} such that $(U \times Q^{N-1}) \cap V = \{(z_1, \cdots, z_N) \in U \times Q^{N-1} | z_1 \}$ $= g^{(i)}(z_2, \cdots, z_N)$ for some i. The function $f^{(1)}(z_1, \cdots, z_N)$ $= \sum_{i=1}^{N} f(g^{(i)}(z_2, \cdots, z_N), z_2, \cdots, z_N) (\prod_{j \neq i, 1 \leq j \leq n} (z_1 - g^{(j)}(z_2, \cdots, z_N)))$ $(\prod_{j \neq i, 1 \leq j \leq n} (g^{(i)}(z_2, \dots, z_N) - g^{(j)}(z_2, \dots, z_N)))^{-1}$ is well defined, agrees with f on $(U \times Q^{N-1}) \cap V$, and is bounded. (2)₁ is proved. Suppose $(2)_k$ is true for $1 \leq k < m$. We can construct bounded holomorphic functions f_i on $G_i = U^{i-1} \times Q \times U^{m-i} \times Q^{N-m}$, $1 \le i \le m$, such that $f_i = f$ on $G_i \cap V$. Let $h_i = (\tilde{f} - f_i)/g$ on G_i . Since $h_i - h_j = (f_j - f_i)/g$ is bounded on $G_i \cap G_j$ (because g^{-1} is bounded on Q^N), we can construct by Theorem 3 $\tilde{h}_i \in H^{\infty}(G_i)$ such that $\tilde{h}_i - \tilde{h}_j = h_i - h_j = (f_j - f_i)/g$. The holomorphic function $f^{(m)}$ on $U^m \times Q^{N-m}$ which agrees with $f_i + g\tilde{h}_i$ on G_i is bounded and agrees with f on $(U^m \times Q^{N-m}) \cap V$. (2)_m is proved. By $(2)_N$ we can construct $f^{(N)} \in H^{\infty}(U^N)$ which agrees with f on V. It is clear from the constructions that the map defined by $f \mapsto f^{(N)}$ is a bounded linear map from $H^{\infty}(V)$ to $H^{\infty}(U^N)$. Q.E.D.

The author wishes to thank H. Alexander for pointing out some errors in an earlier version of this note.

References

^{1.} H. Alexander, Extending bounded holomorphic functions from certain subvarieties of a polydisc, (to appear).

^{2.} W. Rudin, Zero-sets in polydiscs, Bull. Amer. Math. Soc. 73 (1967), 580-583.

UNIVERSITY OF NOTRE DAME