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Suppose U is the unit disc in C. For 0<r<l Qr (or simply Q) is

the annulus {zG^| |z| >^}- A subvariety F of pure codimension 1

in UN is called a Rudin subvariety if for some r Vf~\QN = 0. A Rudin

subvariety is called a special Rudin subvariety if there is 5>0 such

that, for l^k^N, (z', a,-, z")E(Qk-1XUXQN-k)r\V, i-1, 2, and

«i?^, we have |ai— a2| = 5. If a holomorphic function/generates the

ideal-sheaf of its zero-set E, then we write Z(f) =E. The Banach space

of all bounded holomorphic functions on a reduced complex space X

under the sup norm is denoted by HX(X) and the norm of/G77M(X)

is denoted by \\f\\x- The following two theorems were proved by

W. Rudin [2] and H. Alexander [l] respectively.

Theorem I. If V is a Rudin subvariety, then there is f€.H"'(UN)

such that Z(f) = V.

Theorem 2. If V is a special Rudin subvariety, then there is a

bounded linear map from 77M(Fj to HX(UN) which extends every bounded

holomorphic function on V to one on UN.

Cartan's Theorem B implies that an analytic hypersurface of a

polydisc is the zero-set of a holomorphic function and that every

holomorphic function on the hypersurface is induced by a holo-

morphic function on the polydisc. One can expect that some Theorem

B with bounds would easily yield the above two theorems. In this

note we prove a simple theorem on sheaf cohomology with bounds

(Theorem 3 below) which can imply Theorems 1 and 2. This gives

us more perspective proofs of these two theorems.

Suppose X is a reduced complex space and 0 is the structure-sheaf

of XX UN. Let Wk = XX Uk~lX QX UN~k, 1 = k ̂  N, and SB = { Wk}.

For i^O and l^io, • • • , i,£N Wio...ip denotes Wioi\ ■ ■ ■ rWlV If

/GC'(SB, Ö), tiienfit...i,ET(Wit...i,, 0) denotes the value of /at the

simplex (Win, ' ' ' . Wir) of the nerve of SB. Let p = 2/(l — r) and for

lgjxCiVlet

*> = £(    (" + i)"-y.
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Lemma 1. Suppose f is a bounded holomorphic function on XXQ

whose absolute value is bounded by a positive number K. Suppose for

wEX f{w, z) = Z"- - » hli{w)z" is the Laurent series expansion of f in z

{where z is the coordinate function of Q). Let g{w, z) = Z"-o hli{w)zli on

XXQ. Then \\g\\xxQèpK.

Proof. Fix {w, z)EXXQ. Choose arbitrarily two positive numbers

a and b such that r<a< \z\ <o<l. We need only prove that | g{w, z)\

^2bK/{b—a), because the result follows then from letting a—>r and

b—l.
Case (i). \z\ é{a+b)/2. Then |f-z| ^{b-a)/2 for |f| =b.

, I   1    r      /(w, f) 2b
\g{w,z)\ = — j    ~^¿r s-—k.

I L-kiJ ifi^i, ç — z b — a

Case (ii). |z| £{a+b)/2. Then |f-z| ^{b-a)/2 for |f| = a.

\f{w, z) - g{w, z)\   =   — I        J--dt   =-K.
I iTrî«/ ifi==o  f — z b — a

Hence | g(w, z)| ^2bK/{b-a). Q.E.D.

Theorem 3. For \^v<N there exists a linear map </>„: 5"(2B, 0)

—♦C"~1(!2S> 6) <wer the ring of all holomorphic functions on X such that

(i) 8<¡)y = the identity map on 5"(2S, 0), and

(ii) iffEB'{m, 0) and \\fh...i,\\wit...i,£K for l£i0, • ■ • , i^N,
then \\(4>,(f))u—i,-i\\wit..-i,-i£v*K f™ 1=i»> ' ' ' . ¿-î^A7-

Proof. First we define for l^i^N and Q^v<N a linear map

e,: C"(SB, ©)—»C*(3B, 0) over the ring of all holomorphic functions on

X as follows: Suppose/GC"(2B, ©)• If /<„■ ••<,= Z"- - » ^io'" ''V<is the

Laurent series expansion of/<„...<, in z¿ (where z¿ is the ith coordinate

function of I/*), then (*(/))<,.-■*-ZiT-o *?*""^«f- By applying
Lemma 1 with X replaced by the product of X and U^'1, we have

||(«<(/))<o---<Jkio---.-,^p||/<o-"dk<o...«V Observe that ((1 -«,)(/))<„...<,
= 0 if îVîo, • ■ -, *'». For 0-gv<N— 1 we have (1— ei) o (1 — e2) o ■ ■ ■

o {í—eN)=0 on C"(3B, 0), because for any 1¿í0, • • • , i,^N there

exists l^î'^A7 such that z'^î'o, • • • » *»■ Since e¿ commutes with 5,

forl^i'<A'wehave(l-ei)o(l-g2)o • • • o (1 -eN) =0onß'(2ö, 0).

Next we define for láí-'^A'and 1 Ú v <N a linear map k,: C'{$&, 0)

—»C"_1(S[Ö, 0) over the ring of all holomorphic functions on X as

follows: If /GO(2S, 0), then set (fe<(/))<0...i,_! to be the holomor-

phic function on ff,...^, whose restriction to Wt,,_, is (e¿(/))i,v_r

Straightforward computation shows that for lgi^A7' and lgp<A

we have e, = 5¿, —£,-5 on C"(2B, 0). Hence for \^v<N we have

(l-i*i)o(l-5k)o ■ • -o(l-8*w)=0 on B»(SB, 0). For l^y<iV
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define </>„: £'(3B, 0)^C'~1(9B, ©) by

N

<t>, = T, (-i)"_1 Z M*<. ■ • • «**•

Then 0, satisfies the requirement. Q.E.D.

Remark. By using sup | Re/<0...,•„ | on Wi(¡... .„and sup | Re <£„(/) ,-„... ,-„_, |

on Wi0.. .¿„j instead of using ||/,0.. .,-,|| w,-0. • -;,,and ||^(/)¿„- • •.•„Jkv. .iv_v

a theorem similar to Theorem 3 can be proved. We need only prove a

lemma which corresponds to Lemma 1 but uses sup norms of the real

parts instead. To do this, we observe that/1—»Re/defines a continuous

¿^-linear injection with closed image from the Fréchet space E of all

holomorphic functions on Q whose constant coefficients in the Laurent

series expansions are real to the Fréchet space of all harmonic func-

tions on Q. Hence, for r<a<&<l, there exists a constant Csuch that,

if/G-E and sup|Re/| £K, then |/(z)| ^CK on a^ |z| gb. The de-
sired lemma follows from an argument analogous to the proof of

Lemma 1, but this time we leave a and b fixed instead of letting a—>r

and b—»1 and do not restrict |z| to (a, b).

Proof of Theorem 1. By Cartan's Theorem B there is a holo-

morphic function / on UN such that Z(f) = V. We can assume

Vr\(Qr')N= 0 for some r' <r. We are going to prove (1)* by induction

on k.

On UkXQN~k (and likewise on products obtained by permut-

ai    ing the N factors) we can construct a bounded holomorphic

function/'« such that Z(/<») = (UkXQN~k)r\V and( /«))-»

is bounded on QN.

QNi~\V=0 implies that (UXQN~l)r\V is an analytic cover over

QN~l of, say, n sheets. There exists a proper subvariety A in QN~l and

locally defined holomorphic functions g(1), • • ■ , g(n) on QN~l such

that (U X (QN~l - A)) n V - {(zi, ■ ■ ■ ,zN)EUX (Q"'1 - A)\Zl

= g(i)(z2, ■ ■ ■ , zN) for some i}. The bounded holomorphic extension

/<» on UXQN~l of Uî-i (zi-g(i)(z2, • • • , z„)) satisfies Z(/<»)

= (UXQlf-1)r\V and (P)"1 is bounded on Q*. (l)i is proved. Sup-

pose (\)k is true for 1 ̂ k<m. Then for 1 S¡¿ = m we can construct a

bounded holomorphic function/< on G¿= t/^XQX t/™-«'X C^"1 such

that Z(/t) = G/Wand/r1 is bounded on Qw. By replacing/,- by the

product of/< with suitable powers of z¿, zm+i, • • • , zjv, we can assume

that we can select a regular branch hi of log(///<) on G¿. Since hi — hj

= a branch of log(/y//<) has bounded real part on Gii\Gj, by the

Remark following Theorem 3 we can construct holomorphic functions
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hi on d with bounded real parts such that Jii — Jij = hi — hj = a branch

of log(/y//i). The holomorphic function/'"1' on UmXQN~m which agrees

with fi exp(Ä.) on G, satisfies Z(/<■">) = (UmXQN~m)r\V and is

bounded. Moreover, (/(m))_1 is bounded on QN. (l)m is proved. The

theorem follows from (1)n- Q.E.D*

Proof of Theorem 2. By Theorem 1 we can construct gEH^CU1*)

such that Z(g) = V. The construction implies that g_1 is bounded on

QN. Take/G77°°(F). By Cartan's Theorem B/ is the restriction to V

of a holomorphic function / on UN. We are going to prove (2)k by

induction on k.

On UkXQN~k (and likewise on products obtained by permut-

ât    ing the N factors) we can construct a bounded holomorphic

function/'« which agrees with/on (UkXQN~k)r\V.

From the conditions of special Rudin subvarieties we conclude that

(UXQN~1)r\V is an unbranched analytic cover over QN~1 of, say,

n sheets. There are locally defined holomorphic functions g'1', • • • ,

gM on Q"-1 such that (UXQN~1)r\V = {(zx, ■ ■ ■ , zN)EUXQN~1\z1

= g(,)(z2, • ■ • , Zn)   for   some   i}.   The   function  /(1)(zi, • • • , z.v)

= Sf-l/(g(,)(Z2,   •   •   • ,Ziv),Z2,  •   •   • , ZArXlX^.lSJS» (Zl-g(j)(Z2,  •  •  • ,Zjv)))

(ILy.-.isjsn (g(i>(z2, • • • , zjv)-g0,(z2, • • • , Zjv)))-1 is well defined,

agrees with/on (UXQN~1)(~\V, and is bounded. (2)i is proved. Sup-

pose (2)k is true for 1 ̂ k<m. We can construct bounded holomorphic

functions/< on G,= U^XQX Um~'XQN'm, l^i^m, such that f{=f

on Gi(~\ V. Let fe<= (/—/»)/g on G¿. Since hi — hj=(fj—fi)/g is bounded
on Gif~\Gj (because g_1 is bounded on Qw), we can construct by Theo-

rem 3 hiEHK(Gi) such that hi — hj = hi — hj=(fj—fi)/g. The holo-
morphic function/'m) on UmXQN~m which agrees with /,+gA¿ on Gi

is bounded and agrees with/on (UmXQN~m)r\V. (2)m is proved. By

(2)n we can construct f{N)EHK(UN) which agrees with/ on V. It is

clear from the constructions that the map defined by /i—»/w is a

bounded linear map from 77"(V) to HK(UN). Q.E.D.

The author wishes to thank H. Alexander for pointing out some

errors in an earlier version of this note.
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