SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

EVERY OPERATOR IS THE SUM OF TWO IRREDUCIBLE ONES

HEYDAR RADJAVI
Let \mathfrak{H} be a separable (complex) Hilbert space. An operator on \mathfrak{H} is called irreducible if it has no reducing subspaces other than the trivial ones, $\{0\}$ and \mathfrak{C}. Halmos [2] has recently aroused interest in these operators by showing that they are dense in the algebra of all operators. The present note was motivated by a paper of Fillmore and Topping [1] in which it is proved that every operator is the sum of four irreducible operators. We shall make use of the obvious fact that A is irreducible if and only if the only subspaces of \mathfrak{H} invariant under both $\operatorname{Re} A$ and $\operatorname{Im} A$ are $\{0\}$ and \mathcal{H}.

Lemma. Let S be a finite or countably infinite set of nonscalar operators on $\mathfrak{H C}$. Then there exists a hermitian operator K on \mathfrak{H} such that no member of S leaves invariant a nontrivial invariant subspace of K.

The special case of this lemma, where δ has one element, is proved in [3]. The Baire-Category proof given there immediately extends to the more general case.

Theorem. Every operator on a separable Hilbert space is the sum of two irreducible operators.

Proof. Let A be any operator on \mathfrak{F}. If A is scalar, then any irreducible operator B will give the desired decomposition $A=(A-B)$ $+B$. Hence assume A is not scalar and let $M=\operatorname{Re} A$ and $N=\operatorname{Im} A$.

Assume first that both M and N are nonscalar. Apply the lemma with $\mathcal{S}=\{M, N\}$ to obtain a hermitian operator K. Then $A=A_{1}+A_{2}$, where

$$
A_{1}=(M-K)-i K \quad \text { and } \quad A_{2}=K+i(N+K)
$$

Since every subspace invariant under $M-K$ and K is also invariant under M, the choice of K implies that A_{1} is irreducible. So is A_{2} by a similar argument.
Since M and N are not both scalar, to complete the proof we must only treat the case where exactly one of them is scalar. Assume, con-

[^0]sidering $i A$ instead of A if necessary, that M is scalar: $M=c I$. Apply the lemma with $\mathcal{S}=\{N\}$ to obtain K. Then
$$
A_{1}=K+c I+i N / 2 \quad \text { and } \quad A_{2}=-K+i N / 2
$$
are both irreducible and $A=A_{1}+A_{2}$.

References

1. Peter A. Fillmore and David M. Topping, Sums of irreducible operators, Proc. Amer. Math. Soc. 20 (1969), 131-133.
2. Paul R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215-223.
3. Heydar Radjavi and Peter Rosenthal, Matrices for operators and generators of $B(\mathcal{H})$, (to appear).

University of Toronto

[^0]: Received by the editors May 10, 1968.

