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In this paper, it is proved that the convex kernel of a compact

¿-dimensional starshaped set is the set of points that see all the

(d — 2)-extreme points. Certain maximal convex subsets are classified

as being intersectionally independent, and the number of these pres-

ent in a starshaped set leads to an upper bound on the dimension of

the convex kernel.

Any starshaped set is related to a particular convex set, i.e., its

convex kernel. With a review of the basic definitions given below,

we see that this association suggests two general problems. First is the

selection of a convex set and the analysis of whether it is the convex

kernel of some starshaped set. The second is selection of a starshaped

set and the analysis of its convex kernel; in particular the dimension

characteristics or the construction of this related convex set. General

results related to the first problem are given by Klee [l] and Post

[2]. Particular conditions related to the dimension question posed in

the second problem are given by Foland-Marr [3], Hare-Kenelly

[4] and Larman [5]. Generalizations of these conditions are given by

Toranzos [6]. In this paper both facets of the second problem are

studied. The first section is directed toward the following considera-

tion. It is known that the convex hull of a compact set is constructible

by taking the convex hull of its extreme points. Realizing that the

convex kernel is the intersection of the stars of all the points of the

set, the question is posed whether the convex kernel is the intersec-

tion of the stars of the extreme points. An affirmative answer is given

for ^-extreme points and a negative answer is presented for extreme

points. The second section recalls that the convex kernel is the inter-

section of all the convex components and with this fact gives a result

that relates convex components to the dimension problem.
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In a linear space, we say that x sees y via 5 whenever x and y

are points of 5 and the segment xy is contained in S. The totality of

points of 5 that x sees via S is taken to be the S-star of x, i.e., S(x)

= {y: xyQS}. The set S is said to be star shaped whenever there is

some point x that sees all of S, i.e., S(x) = S. In this case the collection

of all such points is termed the convex kernel, ck(5) = {x: S(x) =S\.

A cow»ex component is taken to be a maximal convex subset of S.

With this it can be shown that the convex kernel is convex, and may

be characterized as either the intersection of the stars of all the

points of S, or the intersection of all the convex components of S. See

Valentine [7] and Toranzos [8].

1. Convex kernel and extreme points. The following definition

includes modifications of previous definitions given by Asplund [9]

and Fan [lO]. It should be noted that the definition applies to non-

convex sets, so 0-extreme and extreme points are not identical.

Definition 1.1. A point p in a compact set 5 is called a k-extreme

point if and only if it is not the centroid of some nondegenerate

(£ + 1)-si m pi ex in 5, i.e., a 0-extreme point is not interior to a seg-

ment in 5. The point p is an extreme point if and only if xQS, yQS,

p=ßx+(\-ß)yQS and 0</3<l imply x=y=p.

Theorem 1.2. If S is a compact star shaped set in d-dimensional

Euclidean space, Rd (d^2), then ck(S) =C\aeA S(ea) where {ea: ctQA }

is the set of (d — 2)-extreme points of S.

Proof. Since ck(5) = C\x^s S(x), we need only show that

E = f\aeAS(ea)Qck(S). Take wQE~ck(S). Since wQck(S), there

exists yQS such that wy(£S. By the compactness of S, we take y

to be such that ßw + (l—ß)yQS for arbitrarily small ß>0. Take

kQck(S)9*0, and consider the ray ky = {(l-ß)k+ßy: ß^O}. Since

kQck(S), we have kyC\S = kq, a closed segment. For the first case

consider q to be different from y. The point q cannot be a (d — 2)-

extreme point, for this would give wqQS. This results in k seeing

the segment wq. This implies that wyQS, contradicting wy (£S. Thus

q is the centroid of a (¿ — 1)-simplex <r which is a subset of 5. Letting

P denote the plane through w, q, and k, it follows that P(~\o- contains

an open segment relint ab such that ab($_F(k, q). Here relint indicates

the relative interior with respect to the smallest containing flat and

F(k, q) is the line established by k and q. But this implies that for

sufficiently small ßo>0, ßw-\-(\—ß)yQS for every ß satisfying

0<j3<j3o, contradicting the choice of y. Thus we conclude that q=y.

Since wy<X_S, we see that y is not a (d — 2)-extreme point. Now

consider the nondegenerate (d — i)-simplex that is contained in 5
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with y as its centroid. This simplex establishes a hyperplane 77 and

as in the previous case, we examine the intersection of the w&y-plane,

P, and the hyperplane 77. The choice of y insures that y is a boundary

point of Pi\S. We observe that HC\P is a line, and from this conclude

that 77 separates w and k. For y is interior to a segment contained in

SC\P, and nonseparation above would, as before, give points of

wyC\S arbitrarily close to y. Now construct the following regions.

First, W~ is taken to be a closed half-space opposite from w with

respect to a hyperplane containing ky and not w. Then, K~ is taken

to be a closed half-space opposite from k with respect to a hyperplane

containing wy and not k. The set T=K.-r\W~r\S(~\P is a nonempty

compact set. The generalized Krein-Milman theorem [lO, p. 146]

states that T has an extreme point, t. Since any extreme point of T is

obviously a (d —2)-extreme point of 5, we have wtQS. Thus k sees

wt and wyC5.
All the hypotheses of the theorem seem to be necessary. A closed

half-space shows that compactness is needed to insure the existence

of any type of extreme points. The planar set

B= {(x, y) : x + y g 3, x ^ 0, y è O}

~ {(x, y): x + ly < 3, x > 1, y > 0}

shows that starshapedness is required. That is B is a nonstarshaped

set, but the stars of its 0-extreme points intersect in a nonempty set.

The set C=B~{(x, y):Kx<3, y = 0| illustrates that extreme

points are not sufficient. A complicated three space example is needed

to show that 0-extreme points fail to allow a construction of the con-

vex kernel. First construct a tetrahedron, i.e., D = convex hull

{(24, 0, 0), (0, 24, 0), (0, 0, 24), (0, 0, 0) j. Remove the plane interior

of conv {(24, 0, 0), (0, 24, 0), (0, 0, 0)j. Here conv represents the

convex hull. Then remove the interior of conv {(24, 0, 0), (0, 0, 0),

(0, 24, 0), (16, 4, l)}Uconv{(0, 24, 0), (0, 0, 0), (8, 8, 4), (16, 4, 1) j.
The remaining set has four 0-extreme points, i.e., the vertices of the

original tetrahedron. These four points can see (0, 12, 6), but this is

not a kernel point since it fails to see (16, 4, 1). This type of example

seems to generalize, but it is already unduly complicated. Thus no

proof is given that in general (d —2)-extreme points are needed.

2. Convex kernel and convex components. This section relates

convex components to the dimension of the convex kernel. The

earlier papers state finite point conditions related to the dimension

of the convex kernel, and the most general result is due to Toranzos

[0]. The main theorem of this section is stated in terms of convex
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components, but we demonstrate that the theorem generalizes the

point condition results.

The results are given in finite dimensional linear spaces. Flats are

translates of subspaces, and the linear dimension of the related sub-

space is assigned to the flat. The empty set has dimension —1. A set

S is associated with its smallest containing flat, F(S), and the corre-

sponding dimension is assigned to the set, i.e., dim(S) = dim(P(S)).

A collection of intersecting flats is said to be intersectionally indepen-

dent, (i.i.), when no one of the flats contains the intersection of the

remaining flats. A single flat is taken to be an intersectionally inde-

pendent collection. A collection of sets is called intersectionally

independent provided the collection of containing flats is intersec-

tionally independent. We see that intersectional independence is

preserved when we take subcollections. Likewise intersectional inde-

pendence is preserved when we replace some of the sets with the

intersection of their containing flats, i.e., {Si, • • • , Sk} (i.i.) gives

{Ç)i_iF(Si),Sj+i,---,Sk}(i.i.)

Lemma 2.1. 7/ {S,} 1 = 4 = £ is an intersectionally independent collec-

tion of sets, then

dimi n F(Si)\ = min (dim(5,)) - k + 1.

Proof. In case k = l, the result is trivial. So we assume without loss

of generality that min¿(dim(5<)) =dim(5i) =s. Observe that

dim(P(5i)r\P(52)) ¿s — i. For otherwise, we would have a flat prop-

erly containing a subflat of the same dimension. Since {P(Si)np(S2),

F(S3)} is an intersectionally independent collection, we have

dim((P(5i)nF(52))nP(53))=dim(P(5i)ni"(52))-1 = 5-2. A sim-

ple induction formally completes the proof.

Recall that the convex kernel is the intersection of all the convex

components, and is empty for nonstarshaped sets. Thus the convex

kernel is contained in the intersection of any collection of convex

components. Likewise its containing flat is contained in the inter-

section of the collection of flats that contain the components. This

results in the following theorem.

Theorem 2.2. In a finite dimensional linear space; whenever a set S

contains k intersectionally independent convex components {Si},

1_4 = &, we have dim(ck(5))^minj(dim(5<))— k+1.

For a starshaped set M in a linear space, Toranzos [6] introduces

property ak as the following statement. For each affinely independent

fe-f-2  points   {xi, Xi, • ■ ■ , xk+î} QM,  dim fifí2 5(x,) = fe — 1. This
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property gives an upper bound on the dimension of the convex kernel.

We state Toranzos's theorem as the following.

Corollary 2.3. If M is a starshaped set with property ak and

dim(M)>k, then dim(ck(M)) ^k-1.

Proof. Since there is at least one convex component K in M, prop-

erty a* readily gives dim K^k. Thus we have dim(ck(Af)) ^k —1 + 1

= k. The set M cannot be a convex set, so we must have two distinct

convex components K~i and K2. If the components are intersectionally

independent, then the dim(ck(Af)) ^k — 1. So assume that the com-

ponents are not intersectionally independent. The components must

contain the nonempty kernel, so this assumption gives (with adjust-

ments on subscripts if necessary) F(K~i) QF(K2). If the containment

is proper we have dim(Tii) g k — 1 and the resulting bound dim(ck(Af))

g(fe-l)-l+l=*-l. Equality, i.e., F(Ki) = F(K2), for all compo-
nents K gives dim M = k, and the hypothesis is violated.

Examples can be readily constructed to show that the bound estab-

lished in Theorem 2.2 is the exact dimension of the convex kernel for

particular sets and for other sets the bound is in excess of the actual

dimension of the convex kernel. It should also be noted that there

exist planar compact starshaped sets with the following properties.

Any finite number of convex components intersect in a set that has

dimension greater than the kernel. Any finite number of extreme

points see jointly a set that has a dimension greater than the kernel.
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