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In his results on the theory of covering surfaces, Ahlfors [l] ob-

tained theorems which are "unintegrated" analogues of Nevanlinna's

first and second fundamental theorems in the theory of meromorphic

functions. For a given function / meromorphic in the plane, Ahlfors'

theory unfortunately gives relatively little information about the

behavior of the restriction of/ to | z\ ^r for certain exceptional values

of r. While observing that his second fundamental theorem did imply

Picard's theorem, Ahlfors remarked that the existence of these excep-

tional r-values seemed to make it impossible to deduce Nevanlinna's

second fundamental theorem from his by integration. Nevanlinna

[3] in his treatise on meromorphic functions also stated that the

exceptional r-values of Ahlfors' theory prevented one from obtaining

the integrated form of the second fundamental theorem from the

unintegrated form.

Two attempts to derive the classical result from Ahlfors' second

fundamental theorem have met with partial success. Both however

lead to versions of the classical theorem for which there are excep-

tional r-values even for functions of finite order. It is the purpose of

this note to show that Ahlfors' theory implies a form of the classical

second fundamental theorem having no exceptional r-values for

functions of finite order. The proof is in fact extremely elementary,

yet seems to have been overlooked.

We remind the reader of one form of Ahlfors' second fundamental

theorem.

Theorem (Ahlfors). Let f(z) be meromorphic in |z|<». If

au a2, ■ ■ -, aq are q^3 distinct elements of the Riemann sphere, then

there exists h>0 depending on ay a2, ■ ■ ■ , aq such that

(1) T [S(0 - ñ(t, a,)} Ú 25(0 + hL(t),

where wS(t) is the area on the Riemann sphere of radius 1/2 of the image

under f of \z\ ^t with due regard being paid to multiplicity, L(t) is the

length on the sphere of the image of \z\ =t, and ñ(t, a,) is the number of

distinct roots of the equation f(z) =a,in \z\ ^t.
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dt,

I

(The exceptional r-values of Ahlfors' theory are those on which

L(r)^5(r)1/2+'; this set can be shown to have finite logarithmic

measure.)

Dinghas [2] divided (1) by / and integrated from 0 to r to obtain

5 /» r    £(A

T, {Toir) - Nir, ar)} Ú 2F0(r) + A
y=l J 0

where Toir)=fó(Sit)/t)dt is the spherical characteristic of/ and

A(r, a,) =fo(n(t, a,)/t)dt. (There are trivial modifications if f(0)=av

for some v.) He then showed

Ut)
-^dt^(To(r)yi2logTo(r)

o       t

for all r (££ where JE dr/r log r < oo. Thus it was shown that Ahlfors'

second fundamental theorem implies a weakened form of Nevan-

linna's theorem in which there are exceptional r-values for functions

of both finite and infinite order.

Wille [4] has shown that Ahlfors' inequality (1) implies that

given e > 0, there exists a set Ex of finite logarithmic measure such that

£ {T0(r) - N(r, ay)} g (2 + e)T0(r)

for all r(££i. We now prove the following theorem.

Theorem. Let f(z) be a transcendental meromorphic function in

\z\ < 00. Let ai, ai, ■ ■ -, aq be distinct elements of the Riemann sphere.

Then Ahlfors' inequality (I) implies

(2) £ Í To(r) - Ñ(r, a,)} S 22» + o(TB(r)),
y=l

where (2) holds for all r if f is of finite order and (2) holds off a set of

finite Lebesgue measure iff is of infinite order.

(It is to be noted that the bound on the remainder term in (2) is

not as sharp as is the corresponding bound in Nevanlinna's second

fundamental theorem; however the size of the set of exceptional

r-values is the same in both instances. The only other difference be-

tween the conclusion of the above theorem and the classical theorem

is that (2) does not contain the term A0(r, l/f), the integrated count-

ing function of the set of points z such that/'(2) =0 and fiz)^-a„

lèv^q.)

Proof. It is sufficient to show that /¿(L(0/í)á/ = o(Fo(r)) for the

required set of r-values. It follows from the formulae expressing Sit)
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and L(t) that L(t)^,r(2tS'(t))112. Let r0 be such that S(r0) = l. We

make the following computation, using the Schwarz inequality at the

third step:

Cr L(t) CT (iS'(0)in
-^-dt út21'2 I dt + 0(1)

J 0 t J ro /

cr s'(tyi2s(oin
= 7r21/2|     —-—-dt + 0(l)

a"- s'(t)   \1/2/ Cs(0  V"
„mV (J,T*) +0(,)

á x21'2(log5(r))1/27'o(r)1/2 + 0(1).

If / is of finite order, then log S(r) ^log r0(er) ^A log r for some

A > 0 and all r greater than some ri. Thus if r > ri, we have

2ir2^ log rX1'2      0(1)

o(r)Jo      t ~\    T0(r)    J To(r)

Since/is transcendental, log r/r0(r)—>0 and the result follows.

Now suppose/ has infinite order. Define E2= {r: T0(r)2<T0' (r)}.

Let Ez = E2r\[r0, »). Then

r rx T¿(t) l
m(Ez) =|    dl <  I      -— dt = —— < ».

JEs     -Jro    T0(t)2 T0(r0)

Furthermore, for all r(£E2,

log S(r) = log rTl (r) g log r + 2 log T0(r).

Thus

logS(r)      n
hm      -■ = 0

r-.»;r<£Es       Tt>(r)

and the result follows.
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