WATTS COHOMOLOGY OF FIELD EXTENSIONS1

NEWCOMB GREENLEAF

Let R be a commutative ring and A a commutative R-algebra. In [4] Watts defined a cohomology theory, $H_K^n(A)$, which yields the Čech cohomology of the compact Hausdorff space X in the case when R = R-and A = C(X), the ring of continuous real valued functions on X. The definition of $H_R^n(A)$ was in terms of a specific complex derived from the "additive Amitsur complex." The question of the possible functorial significance of this cohomology theory was raised. As a step in this direction we compute here the Watts cohomology $H_K^n(L)$, where K is a field and L is an arbitrary extension field of K.

We recall the definition of $H_K^n(L)$. The complex $F_K(L)$ is the additive Amitsur complex [3] with a dimension shift of 1: $F_K^n(L)$ is the n+1-fold tensor product of L over K, and the coboundary map $d^n: F_K^n(L) \to F_K^{n+1}(L)$ is given by

$$d^{n}(x_{0} \otimes \cdots \otimes x_{n}) = \sum_{i=0}^{n+1} (-1)^{i} x_{0} \otimes \cdots \otimes x_{i-1} \otimes 1 \otimes x_{i} \otimes \cdots \otimes x_{n}.$$

The homology of this complex is easily found.

PROPOSITION 1. The complex $F_K(L)$ has zero homology except in dimension zero, where $H^0(F_K(L)) \cong K$.

PROOF. It is known [3, Lemma 4.1] that the complex $0 \rightarrow K \rightarrow F_K^0(L)$ $\rightarrow F_K^1(L) \cdots$ is acyclic.

Let $\mu_n: F_K^n(L) \to L$ by $\mu_n(x_0 \otimes \cdots \otimes x_n) = x_0 \cdots x_n$. The subcomplex $N_K(L)$ is given by

$$N_K^n(L) = \{x \in F_K^n(L) \mid \exists y \in F_K^n(L) \text{ with } \mu_n(y) \neq 0 \text{ and } xy = 0\}$$

(the definition is simplified here by the fact that L is a field). Note that $N_K^n(L) \subseteq \ker \mu$. The Watts cohomology $H_K^{\cdot}(L)$ is then defined to be the homology of the quotient complex $C_K^{\cdot}(L) = F_K^{\cdot}(L)/N_K^{\cdot}(L)$. Let $\pi_n: F_K^n(L) \to C_K^n(L)$ denote the standard map.

Let L_{\bullet} be the separable closure of K in L. We shall prove the following

THEOREM. The complexes $C_K(L)$ and $F_{L_a}(L)$ are canonically isomorphic.

Received by the editors March 25, 1968.

¹ This research was partially supported by National Science Foundation Grant GP-7436.

The following corollary is then immediate by Proposition 1.

COROLLARY. Watts cohomology for field extensions is given by $H_K^0(L) \cong L_{\mathfrak{g}}$ and $H_K^n(L) = 0$ for n > 0.

We now establish the theorem.

PROPOSITION 2. Let L be separable algebraic over K, and let $x \in F_K^n(L)$ with $\mu_n(x) = 0$. Then there is a $y \in F_K^n(L)$ with $\mu_n(y) \neq 0$ and xy = 0.

PROOF. It suffices to consider the case where L is a finite extension of K. But then $F_K^n(L)$ is a semisimple ring and every ideal is a direct factor. Hence $F_K^n(L) \cong L' \times \ker(\mu_n)$, where L' is a field and μ_n maps L' isomorphically onto L.

COROLLARY. If L is separable algebraic over K, $N_K^n(L) = \ker(\mu_n)$, and there is a canonical isomorphism $\beta_n : C_K^n \to L$ such that $\beta_n \circ \pi_n = \mu_n$.

PROPOSITION 3. Let K be separably closed in L (i.e. $L_s = K$) and let A be a commutative K-algebra in which every zero divisor is nilpotent. Then every zero divisor in $A \otimes_K L$ is nilpotent.

PROOF. We may work within a finitely generated subalgebra of A, and hence assume A is Noetherian. Let N be the ideal of nilpotents in A. Then (0) is a primary ideal in A and N is its associated prime. It then follows [1, Chapter IV, §2.6, Theorem 2] (with E=A, $F=B=A\otimes_K L$) that the associated prime ideals of (0) in $A\otimes_K L$ coincide with the associated prime ideals of the ideal $N\otimes_K L$ in $A\otimes_K L$. But by [2, Chapter IV, Theorem 24] every zero-divisor in $A/N\otimes_K L$ is nilpotent and hence $N\otimes_K L$ is a primary ideal.

COROLLARY. If K is separably closed in L, then every zero divisor in $F_K^n(L)$ is nilpotent, for all n, and $F_K^n(L) = C_K^n(L)$.

Now let $\theta_n: F_K^n(L) \to F_{L_s}^n(L)$ by $\theta_n(x_0 \otimes \cdots \otimes x_n) = x_0 \otimes \cdots \otimes x_n$. It is clear that θ_n is surjective and that $\theta = \{\theta_n\}$ is a map of complexes, $\theta: F_K(L) \to F_{L_s}^i(L)$. Let $x \in N_K^n(L)$, with y satisfying xy = 0, $\mu_n(y) \neq 0$. Then $\theta_n(x)\theta_n(y) = 0$ and $\mu_n(\theta_n(y)) = \mu_n(y) \neq 0$, so $\theta_n(x) \in N_{L_s}^n(L) = (0)$. Hence θ induces a surjective map of complexes $\tau: C_K(L) \to C_{L_s}^i(L) = F_{L_s}^i(L)$. To complete the proof of the theorem we will construct an inverse to τ .

Fix an integer n, and let A denote the ring $F_K^n(L)$, B the subring $F_K^n(L_s)$. If M is an A-module and $\rho: A \to M$ an A-linear map, then ker $(\rho) \supset A(\ker \rho \mid_B)$ and hence ρ factors as $A = A \otimes_B B \to A \otimes_B \rho(B) \to M$. We apply this method to the two maps $\theta_n: A \to F_{L_s}^n(L)$, and $\pi_n: A \to C_K^n(L)$.

PROPOSITION 4. The induced map $A \otimes_B \theta_n(B) = F_K^n(L) \otimes_{F_K^n(L_{\bullet})} L_{\bullet} \to F_{L_{\bullet}}^n(L)$ is an isomorphism.

PROOF. First note that $\theta_n(B)$ is canonically isomorphic to L_s . We construct an inverse. Let $\omega: L \times \cdots \times L \to A \otimes_B \theta_n(B)$ by $\omega(x_0, \cdots, x_n) = x_0 \otimes \cdots \otimes x_n \otimes 1$. If $y \in L_s$, $x_0 \otimes \cdots \otimes y_i \otimes \cdots \otimes x_n \otimes 1 = x_0 \otimes \cdots \otimes x_i \otimes \cdots \otimes x_n \otimes y$. Hence ω is L_s -multilinear and induces $F_{L_s}^n(L) \to A \otimes_B \theta_n(B)$.

Consider the following diagram:

Using Propositions 3 and 4, $\theta_n(B) \cong L_{\epsilon} \cong C_K^n(L_{\epsilon})$ and hence we obtain, by Proposition 4,

$$F_{L_{\bullet}}^{n}(L) \to A \otimes_{B} \theta_{n}(B) \to A \otimes_{B} C_{K}^{n}(L_{\bullet}) \to C_{K}^{n}(L),$$

and the composite map is easily seen to be inverse to τ_n .

The author would like to thank the referee for supplying an elegant alternative to a clumsy induction.

REFERENCES

- 1. N. Bourbaki, Algèbre commutative, Chapter IV, Hermann, Paris, 1961.
- 2. N. Jacobson, Lectures in abstract algebra, Vol. III, Van Nostrand, Princeton, N.J., 1964.
- 3. A. Rosenburg and D. Zelinski, On Amitsur's complex, Trans. Amer. Math. Soc. 97 (1960), 327-356.
- 4. C. Watts, Alexander-Spanier cohomology and rings of continuous functions, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1027-1028.

University of Rochester