
WATTS COHOMOLOGY OF FIELD EXTENSIONS1

NEWCOMB GREENLEAF

Let R be a commutative ring and A a commutative R-algebra. In

[4] Watts defined a cohomology theory, U\{A), which yields the

Cech cohomology of the compact Hausdorff space X in the case when

R = R-and A = C(X), the ring of continuous real valued functions on

X. The definition of 77jj(^4) was in terms of a specific complex derived

from the "additive Amitsur complex." The question of the possible

functorial significance of this cohomology theory was raised. As a

step in this direction we compute here the Watts cohomology 771(7,),

where K is a field and L is an arbitrary extension field of K.

We recall the definition of H\(L). The complex FK{L) is the addi-

tive Amitsur complex [3] with a dimension shift of 1: Fk(L) is the

w +1-fold tensor product of L over K, and the coboundary map

d" : Fl{L)-^Fl+1{L) is given by

»1+1

dn(xQ ® ■ ■ ■ <g> xn) = 23 (-l)^o ® ■ • • ® a'i-i <8> 1 ® Xi <g> • • • ® xn.
•=o

The homology of this complex is easily found.

Proposition 1. The complex FK(L) has zero homology except in

dimension zero, where H°(FK(L))=K.

Proof. It is known [3, Lemma 4.1] that the complex 0—>i£—>7^(7,)
—*FlK(L) • • •   is acyclic.

Let ¡xn: Fk(L)-*L by ßn(x<>® • ■ • ®xn)=x0 ■ ■ ■ xn. The sub-

complex NK(L) is given by

Nl(L) = {x G Fk(L) I ly £ FnK(L)    with    „„(y) * 0    and    xy = 0{

(the definition is simplified here by the fact that L is a field). Note

that 7VKL)Cker /i- The Watts cohomology 77¿(L) is then defined to

be the homology of the quotient complex CK(L) = FK(L)/NK(L). Let

x„ : Fk(L)—*Cr(L) denote the standard map.

Let L„ be the separable closure of K in L. We shall prove the follow-

ing

Theorem. The complexes CK(L) and FLt(L) are canonically iso-

morphic.
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The following corollary is then immediate by Proposition 1.

Corollary. Watts cohomology for field extensions is given by

H°K{L)^LS and HnK{L) =0forn>0.

We now establish the theorem.

Proposition 2. Let L be separable algebraic over K, and letxE:F%{L)

with pn{x) = 0. Then there is a yÇzFx{L) with p„{y) 9^0 and xy = 0.

Proof. It suffices to consider the case where L is a finite extension

of K. But then F%{L) is a semisimple ring and every ideal is a direct

factor. Hence Fk{L)=L' Xker(p.„), where U is a field and pn maps V

isomorphically onto L.

Corollary. If L is separable algebraic over K, Ng{L) =ker{pn),

and there is a canonical isomorphism ß„ : C%—>L such that ßn o irn = /xn.

Proposition 3. Let K be separably closed in L {i.e. LS = K) and let A

be a commutative K-algebra in which every zero divisor is nilpotent. Then

every zero divisor in A®rL is nilpotent.

Proof. We may work within a finitely generated subalgebra of A,

and hence assume A is Noetherian. Let 7Y be the ideal of nilpotents

in A. Then (0) is a primary ideal in A and iV is its associated prime.

It then follows [l, Chapter IV, §2.6, Theorem 2] (with E = A, F = B

= A ®kL) that the associated prime ideals of (0) in A ®rL coincide

with the associated prime ideals of the ideal N®rL in A ®kL. But

by [2, Chapter IV, Theorem 24] every zero-divisor in A/N®kL is

nilpotent and hence N®KL is a primary ideal.

Corollary. // K is separably closed in L, then every zero divisor in

Fk{L) is nilpotent, for all n, and F%{L) = Ck{L).

Now let 0n: F%{L)-+Flt{L) by 0„(xo® • • • ®xn)=x0® ■ ■ ■ ®xn.

It is clear that 0„ is surjective and that d = {dn} is a map of complexes,

6 : FK{L)-^FLt{L). Let x<E.NnK{L), with y satisfying xy = 0, ßn{y)^Q.

Then en{x)dn{y)=Q and pn{dn{y)) =Pn{y)^0, so On{x)<=Nl,{L) = (0).

Hence d induces a surjective map of complexes t: CK{L)-^Cit{L)

= FLt{L). To complete the proof of the theorem we will construct an

inverse to r.

Fix an integer n, and let A denote the ring Fl-{L), B the subring

F\{LS). If M is an A -module and p: A—>M an A -linear map, then

ker (p)I3^4(ker p\ b) and hence p factors as A =A®BB—*A®Bp{B)

—>ikf. We apply this method to the two maps 0„: ¿4—>Fj-a(Z,), and

Tn:A-+FK{L).
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Proposition 4. The induced map A®¡fin(B) = F^(L) ® F^Lt)L„

—*Flt(L) is an isomorphism.

Proof. First note that 6n(B) is canonically isomorphic to Ls. We

construct an inverse. Let w : L X ■ • • XL—^A®s6n(B) byw(x0, • • • ,xn)

= xo® ■ • • ®x„®l. If yE.Ls, x0® ■ • • ®yxi® • • • ®xn®l

= x<¡® ■ • • ®Xi® ■ ■ • ®xn®y. Hence u is T,s-multilinear and in-

duces Fit(L)->A®ndn(B).

Consider the following diagram:

A = A ®sB—A®Bdn(B)~FnL,(L)

A ®£CnK(Ls)

.1
Ck(L)

Using Propositions 3 and 4, 0n(5)^Ls=Cx(7,,) and hence we obtain,

by Proposition 4,

FnL,(L) -» A ®Ben(B) ^A®B CnK(Le) -> CI(L),

and the composite map is easily seen to be inverse to t„.

The author would like to thank the referee for supplying an elegant

alternative to a clumsy induction.
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