THE ORDER OF THE ANTIPODE OF A HOPF ALGEBRA

RICHARD GUSTAVUS LARSON1

The purpose of this note is to show that the order of the antipode of a Hopf algebra is not necessarily 2, but can be any positive even integer or infinite.

A coalgebra over a field K is a vector space C over K together with maps $\delta: C \rightarrow C \otimes C$ and $\epsilon: C \rightarrow K$ satisfying

$$(\delta \otimes 1)\delta = (1 \otimes \delta)\delta$$
 and $(\epsilon \otimes 1)\delta = (1 \otimes \epsilon)\delta = 1$.

The coalgebra is *cocommutative* if $t\delta = \delta$, where $t: C \otimes C \rightarrow C \otimes C$ is defined by $t(c \otimes d) = d \otimes c$. A *Hopf algebra* over K is an associative algebra H with identity, together with identity-preserving algebra morphisms $\delta: H \rightarrow H \otimes H$ and $\epsilon: H \rightarrow K$ which give the underlying vector space a coalgebra structure. If H is an associative algebra, we will denote by $\mu: H \otimes H \rightarrow H$ the map defined by $\mu(h \otimes k) = hk$, and by $\eta: K \rightarrow H$ the map defined by $\eta(a) = a1$. An *antipode* for the Hopf algebra H is a map $\gamma: H \rightarrow H$ satisfying

$$\mu(\gamma \otimes 1)\delta = \mu(1 \otimes \gamma)\delta = \eta\epsilon.$$

If there exists an antipode γ for the Hopf algebra H, then it is unique, and is a Hopf algebra antiendomorphism. If H is either commutative or cocommutative, then $\gamma^2=1$. (See §8 of [1] for proofs of these facts.) The *rder* of the antipode γ is the smallest positive integer n such that $\gamma^n=1$, if such an integer exists, and is infinite otherwise. Since γ is an antiendomorphism, if γ has finite order it must have even order, unless H is both commutative and cocommutative, in which case γ may have order 1.

THEOREM. If n is a positive even integer or infinite, there exists a Hopf algebra over R which has an anti-pode of order n.

Free Hopf algebras over coalgebras. If X is a vector space over K, we denote by T(X) the tensor algebra of X. Let C with the maps δ , ϵ be a coalgebra. The map $C \rightarrow T(C) \otimes T(C)$ given by $c \rightarrow \delta(c)$ (where we are identifying $C \otimes C$ with a subspace of $T(C) \otimes T(C)$ by means of the usual identification of C with a subspace of T(C) induces an algebra morphism $\delta_T \colon T(C) \rightarrow T(C) \otimes T(C)$. Also the map $\epsilon \colon C \rightarrow K$ induces an

Received by the editors March 12, 1968.

¹ This research was partially supported by National Science Foundation grant NSF GP 8390.

algebra morphism $\epsilon_T: T(C) \to K$. It is easily seen that T(C) together with the maps δ_T and ϵ_T is a Hopf algebra, called the *free Hopf algebra* on C.

An antiautomorphism of the coalgebra C is a bijective map $\zeta: C \rightarrow C$ satisfying

$$\delta \zeta = (\zeta \otimes \zeta) t \delta$$
 and $\epsilon \zeta = \epsilon$.

Given an antiautomorphism of C, consider the ideal $I \subset T(C)$ generated by all elements of the form

$$\epsilon_T(c)1 - \mu_T(\zeta \otimes 1)\delta_T(c)$$
 and $\epsilon_T(c)1 - \mu_T(1 \otimes \zeta)\delta_T(c)$,

where $c \in C \subset T(C)$. It is easily checked that $\delta(I) \subset T(C) \otimes I + I \otimes T(C)$ and that $\epsilon(I) = 0$. This implies that $H(C; \zeta) = T(C)/I$ together with the maps δ_H , ϵ_H induced by δ_T , ϵ_T is a Hopf algebra. If κ is the unique antiendomorphism of T(C) satisfying $\kappa \mid C = \zeta$, then $\kappa(I) \subset I$, so κ induces a map $\gamma_H : H(C; \zeta) \to H(C; \zeta)$.

The facts that γ_H is an algebra antiendomorphism and that

$$\mu_H(\gamma_H \otimes 1)\delta_H(c+I) = \mu_H(1 \otimes \gamma_H)\delta_H(c+I) = \eta_H\epsilon_H(c+I)$$

for all $c \in C$ imply that γ_H is an antipode for the Hopf algebra $H(C; \zeta)$. The Hopf algebra $H(C; \zeta)$ is called the *free Hopf algebra with antipode* on C and ζ . Denote by $\pi: C \rightarrow H(C; \zeta)$ the composition of the maps $C \rightarrow T(C) \rightarrow H(C; \zeta)$.

Warning. The map $\pi: C \rightarrow H(C; \zeta)$ need not be injective.

The following Proposition is immediate:

PROPOSITION. Let C be a coalgebra, and let ζ be an antiautomorphism of C. Then there exist a Hopf algebra $H(C;\zeta)$ with antipode γ , and a morphism of coalgebras $\pi\colon C{\to}H(C;\zeta)$ with $\pi\zeta=\gamma\pi$, such that for every Hopf algebra H with antipode γ' and every coalgebra morphism $f\colon C{\to}H$ satisfying $\gamma'f=f\zeta$, there exists a unique Hopf algebra morphism $g\colon H(C;\zeta){\to}H$ with $g\pi=f$.

Construction of the example. We prove the Theorem as follows: we construct a coalgebra C with antiautomorphism ζ of order n such that $\pi\colon C{\to} H(C;\zeta)$ is injective. Then $\gamma \mid \pi(C) = \pi \zeta \pi^{-1} \mid \pi(C)$ is of order n, so that γ is of order at least n. On the other hand, it is clear that γ is of order at most n.

To construct C and ζ we construct a finite dimensional algebra A over R with an antiautomorphism σ of order n, and define $C = A^* = \text{hom}(A, R)$, $\delta = \mu^i$, $\epsilon = \eta^i$, and $\zeta = \sigma^i$. If A has a basis $\{a_i\}$ and a multiplication table $a_i a_j = \sum_{m_{ijk}} a_k$, then δ is given explicitly by $\delta(a_k^*) = \sum_{m_{ijk}} a_i^* \otimes a_j^*$, where $\{a_i^*\}$ is the basis of C dual to the basis

 $\{a_i\}$. If $1 = \sum e_i a_i$, then $\epsilon(a_i^*) = e_i$. If $\sigma(a_i) = \sum s_{ij} a_j$, then $\zeta(a_j^*) = \sum s_{ij} a_i^*$. Thus, in this case $H(C; \zeta)$ can be described as the associative algebra generated by $\{a_i^*\}$, subject to the relations

$$e_i = \sum_{i=1}^{n} m_{iki} s_{il} a_{jl}^{**} and e_i = \sum_{i=1}^{n} m_{ili} s_{kl} a_{jl}^{*} a_{kl}^{*}$$

To prove that $\pi: C \to H(C; \zeta)$ is injective, it is sufficient to find a representation $\rho: H(C, \zeta) \to \text{hom}(V, V)$ such that $\{\rho(a_i^*)\}$ is linearly independent.

Let A be the algebra of all 2×2 matrices over R. If n is a positive even integer, let $\theta = 2\pi/n$. If n is infinite, let $\theta = \alpha\pi$, where α is any irrational number. Let

$$U = \begin{vmatrix} \cos(\theta/2) & \sin(\theta/2) \\ -\sin(\theta/2) & \cos(\theta/2) \end{vmatrix}.$$

Define $\sigma: A \to A$ by $\sigma(T) = U^{-1}T^{\iota}U$, for all $T \in A$. The matrices

$$C' = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}, \quad S' = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix},$$
$$X' = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}, \quad Y' = \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix},$$

are a basis for A. With respect to this basis, $\sigma(C') = C'$, $\sigma(S') = -S'$, $\sigma(X') = \cos \theta X' + \sin \theta Y'$, and $\sigma(Y') = -\sin \theta X' + \cos \theta Y'$. It is clear that the antiautomorphism σ is of order n.

Let C, S, X, and Y be the basis of $C = A^*$ dual to the given basis of A. We apply the discussion in the second paragraph of this section to show that $H(C; \zeta)$ is the algebra generated by C, S, X, and Y, subject to the relations

- (1) $1 = C^2 + S^2 + X\gamma(X) + Y\gamma(Y)$,
- (2) $1 = C^2 + S^2 + \gamma(X)X + \gamma(Y)Y$,
- (3) $0 = -CS + SC + X\gamma(Y) Y\gamma(X)$,
- (4) $0 = CS SC + \gamma(X) Y \gamma(Y) X$,
- (5) $0 = C\gamma(X) + S\gamma(Y) + XC + YS$,
- (6) $0 = CX SY + \gamma(X)C \gamma(Y)S$,
- (7) $0 = C\gamma(Y) S\gamma(X) XS + YC$,
- (8) $0 = CY + SX + \gamma(X)S + \gamma(Y)C$,

where $\gamma(X) = \cos \theta X - \sin \theta Y$ and $\gamma(Y) = \sin \theta X + \cos \theta Y$.

Some straightforward calculations show that equations (1)-(4) are equivalent to

- (9) XY = YX,
- (10) $1 = C^2 + S^2 + \cos \theta (X^2 + Y^2)$,
- (11) $0 = CS SC \sin \theta (X^2 + Y^2)$,

and that the equations (5)-(8) are equivalent to

- (12) $0 = CX + \cos \theta XC \sin \theta XS$,
- (13) $0 = SX + \sin \theta XC + \cos \theta XS$,
- (14) $0 = CY + \cos \theta YC \sin \theta YS$,
- (15) $0 = SY + \sin \theta YC + \cos \theta YS$.

Therefore $H(C;\zeta)$ is the algebra generated by C, S, X, and Y, subject to the slightly less formidable relations (9)-(15).

We now define the representation ρ . Consider the representation of T(C) on a three dimensional vector space defined by

$$C \to \begin{vmatrix} 1 & 0 & 0 \\ 0 & -\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix}, \qquad S \to \begin{vmatrix} 0 & 0 & 0 \\ 0 & -\sin\theta & 0 \\ 0 & 0 & 0 \end{vmatrix},$$
$$X \to \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}, \qquad Y \to \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

Routine calculations show that this representation preserves the relations (9)-(15) and so induces a representation ρ of $H(C; \zeta)$ on this vector space. Clearly $\rho(C)$, $\rho(S)$, $\rho(X)$ and $\rho(Y)$ are linearly independent if n>2. Therefore the antipode of $H(C; \zeta)$ has order n. Q.E.D.

REFERENCE

1. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.

University of Illinois at Chicago Circle