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One of the classical abelian-tauberian theorems, due to Valiron

[14], is

Theorem A. Let \p be an increasing function such that ^(0) =0 and

dpit)
(1) Fix)

Ja     X + t

converges for x>0. Then

(2) Pit) ~ PLit)        (0|X<l,M«o),

where L is a slowly-varying function, if and only if2

(3) Fix) ~ (TrX/sin wX)xk~1Lix)        (x -» »).

The term "slowly-varying" here is used in the sense of Karamata

[8], and means that L is positive and satisfies

(K) L(at)/L(t)->1        (<-»«)

for every <r > 0.

The relation between Theorem A, stated in terms of slowly-varying

functions L, and Valiron's original form of the theorem which uses

the notion of "proximate orders," is explained in [7].

Feller [5, p. 419] has pointed out the importance of observing

that in such an abelian-tauberian statement, the relations (2) and (3)

are equivalent to

piaf) Sin 7TÂ
(4) lim -i— = -<rx        (0 < o- < »).

i-.. tFit) tt\

That each of (2) and (3) implies (4) is the content of Theorem A, a

standard tauberian theorem of some depth (cf. [12], [ô]). The con-

verse assertion, that (4) implies (2) and (3), is on the other hand

quite obvious: for example, (4) implies that ^(o-/)/^(i)—»o-x (i—► œ ) for

every o->0, and this is clearly equivalent to (2). However, the follow-

ing theorem shows that the truth of (4) for a single value of o-(<r = 1,

say) is already sufficient to imply (2) and (3).
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2 When X = 0, irX/sin t\ is to be replaced by its limit, = 1.
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Theorem B. Let yp and F be as defined in Theorem A. Then the con-

dition

(5) a = lim- exists        (a > 0)
i— tF(t)

implies a^l, and (2) and (3) are true with X determined by

(6) a = sin irX/V\        (O á X < 1).

Although Theorem A (as well as many similar tauberian theorems)

is often presented with conditions on £ other than (K), part of the

significance of Theorem B is that it justifies Karamata's condition as

the most natural one. (In this connection, cf. also Feller's discussion

of slow variation in [4, p. 317].)

An early form of Theorem B appeared in my thesis (cf. [il,

Corollary 1.1 ] for the statement and proof of an analogous result);

however, that result was not sharp since I proved there only that (5)

implies (2) and (3) with

£(0 = tt(,)        (e(i)-> 0 as /-► «)

in place of (K).

More recently, Edrei and Fuchs [3] established the sharp form of

Theorem B given above, together with a similar result involving a

kernel different from the one in (1). Their proofs use an impressive

array of ingenious and powerful techniques developed in [3] as well

as in some of their earlier joint work.

Still more recently, Drasin [l] has succeeded in extending the

method of Edrei and Fuchs to cover a wide class of convolution trans-

forms

(7) F(x) = Ck(x- t)f(t)dt.
J -00

Thus if k is a strictly positive £1(— », ») kernel behaving suitably

at ± », / increases (or does not decrease too rapidly), and F is de-

fined by (7), then Drasin's theorem asserts that the existence and

positivity of limx^.xf(x)/F(x) implies f(x)=eXx(b(x), where L(t)

=<p(log t) satisfies (K). In particular, this general result contains

Theorem B.

It is the purpose of this note to develop a new method of proving

Theorem B which is short and quite transparent, and leads immedi-

ately to several refinements (Theorems B' and C, discussed in §2).

The present method is also capable of considerable generalization,
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but I confine myself here to the case of the Stieltjes transform (1) in

order to present the main ideas as clearly as possible.

The proof of Theorem B to be given here also throws some light on

the essential features of the "tauberian" (for lack of a better term)

hypothesis (5). In particular, the first part of the proof involves re-

ducing the problem to that of solving a certain integral equation;

this in itself is typical of tauberian theorems (compare Wiener's re-

marks in [16, p. 50]). But a comparison of the difficulties encountered

in dealing with the trivial integral equation corresponding to the

classical theorem (3)=*(2), and those involved here in proving (5)

=>(2), suggests that in fact Theorem B lies deeper than Theorem A.

One further remark: the statement, as well as the present proof,

of Theorem B contrast interestingly with the Paley-Wiener general-

ization of Mercer's theorem [lO], especially in the dependence of this

proof on the location of the "ones" of the Fourier transform of the

kernel in (1).

1. Proof of Theorem B. An integration by parts transforms (1) into

HO
(1.1) F(x) = f dl,

o    (t + x)2

in view of the following simple remark (which we shall have occasion

to use again): If cp is a positive, increasing function such that

Cm d<b(t) r°

l ~r<x or Ji
d<b(t) c * </>(/) J

— dl < »,
t2

then

(A) 4>(t) = o(t)       (/-»).

It is clear from (1.1) that F(ux) ^ F(x) lor u^l, This observation

together with (5) shows that

yp(ut) yp(ut)
(1.2) 1 g lim inf-g lim sup-^ u

f-.»     yp(t) <^»       yp(t)

for ail «èïl. Fix cr>l, and choose any sequence /„—>» such that

(1.3) C = lim -^-^
»-*» yp(L)

exists. Then the functions gn(u) =yp(utn)/yp(tn) clearly increase and

are uniformly bounded on any finite interval.
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Applying the "selection principle" [15] successively on the inter-

vals O^M^#o (mo = 1i 2, • • • ) in a standard way, we find a subse-

quence nk such that g„t converges for all «^0 to an increasing func-

tion g, with

(1.4) giD = 1,       gi«) = C.

Making a change of variables in (1.1) leads to

XTkFixTk)  PixTk) f °°  piuTk)        du

PixTk)     PÍTk)        J o     vin)    (« + x)2

for any x>0 and all sufficiently large k. By Fatou's lemma, and (5),

we deduce

Cx    gM
(1.6) gix) ^ ax I      -—-—— du.

Jo       (« + X)2

In fact, equality holds in (1.6). To see this, we use the estimate

fB      HO
(1.7) Fir)< ——— dt + WiR)        ir>0,R>0),

Jo    it + r)2

an immediate consequence of the simple relations

Ht)   .    rx Ht) ,t    . r"   Ht)
-dt<\      -dt < 4 I      -
ii + r)2 Jr     t2 Jr    it + R)2

dt g 4F(ic).

In (1.7) set r=XTk and R = sxrk, where x>0, s>0; then the left

side of (1.5) is dominated by

/' •* piuTk) du / 4 \

o      Pirk)    iu + x)2 + \7)

4 \ SXTkFisXTk)    PisXTk)

PisXTk) PiTk)

for all sufficiently large k. Letting k—»<», we use (5) again, and

bounded convergence, to deduce

/' "     gM                4
-;-— du-\-gisx).

o     iu + x)2            s

Now let s—>», and use (A) and (1.6) to obtain finally

/gM
, „ du       (x>0).

o     (w + x)2

A solution of this equation which increases and satisfies g(l) = l

is given by g(x) =xx, with X determined by (6). If this were the only
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such solution, then we would have necessarily C = cr\ by (1.4), and

thus a comparison with (1.3) yields

yp(ct)
(1.9) lim ^-— = C7X        (0 < o- < »),

!->«   yp(t)

since in the above argument cr(>l) was arbitrary. But (1.9) is obvi-

ously equivalent to (2).

To complete the proof of Theorem B, then, it is enough to show

that the only admissible (i.e. increasing, positive) solutions of (1.8)

are given by

(1.10) g(x) = Axx       (A > 0),

where X satisfies (6).

We first show that

log g(x)
(1.11) ß = lim sup < 1

I-»» log X

holds for any admissible solution g of (1.8). Indeed, it is obvious from

(1.8) and (A) that ß^l, and if ß = l, then an elementary argument

[ll, p. 208] shows that there exist sequences x„, SH such that

(1.12) x„—>»,    Sn/Xn-^ » (m—>»)

and

g(u)   ^   (1 + o(l))(g(xn)/xn)u (XnûU ^ Sn, tO W -* »).

Using this inequality in the estimand (1.6) yields

-r~.—^     (»-*<»)
*.      (U

udu

x„ (u + x„y

and hence

a    r tdt

I Ji     (t + iyJ
This inequality is impossible in view of (1.12) and the fact that a>0,

and thus (1.11) is true.

Making an exponential change of variable, equation (1.8) becomes

(1.13) G(y) = f"G(t)k(y - t)dt       (G(y) = g(e»)),
J -»

with
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kix) = aie1'2 + e-*'2)-2.

A standard result in Fourier analysis [13, p. 305] asserts that any

solution of (1.13) such that

(1.14) G(y) = 0(««i»')        (y-*± *)

for some a < 1 must have the form

(1.15) Giy) = £ £ A,,vy*-i exp[-«o,y],
v    p=l

where co„ runs through the sequence of zeros of kiui) — 1 such that

| Im a, | g a, and where q, is the multiplicity of the zero wr, the .4,,p

are constants and

l(
/OO                                                             /*   x             /-ico

*(x)e"udx = a I     -¿/ =
-              Jo (t + iyit + l)2 sin(jxco)

Clearly, there can only be a finite number of solutions a, = %,-\-iv,

of a(£+î'?) = 1 in \v\ ^c, since ¿((¡-(-ít;)—>0 uniformly in this strip

when £—> + ».

Note that by (1.11) any admissible solution G of (1.13) must satisfy

(1.14). Further, since G must be real and positive we need consider

only the zeros wv which are purely imaginary, that is the w, =i?,„

such that

(1.16) sin irr\,/-Kr\v = a        (— 1 < nr < 1).

It follows from (1.16) that aiSl. If a<l, there are precisely two

values ??, for which (1.16) is true, call them X and —X (0<X<1).

Then (1.15) reduces to

Giy) = Ae*" + Be-*»,       g(x) = ,4xx + Bor*.

Since g is increasing and positive for x > 0, necessarily A > 0 and 5=0,

which proves (1.10) when «<1.

If a = l, then a glance at (1.16) and (1.15) shows that in this case

g(x) = A + B log x,

with A>0 and B = 0. This completes the proof of (1.10), and hence

also of Theorem B.

2. Further remarks on Theorem B. One additional feature of the

above proof should be explicitly pointed out: with only a single

notational change (replace "<„—>«" ¡n the second paragraph of §1

by "tn—>0"), it also yields the following complement which describes

the asymptotic behavior of the Stieltjes transform at the origin.



i969] A COMPLEMENT TO VALIRON'S TAUBERIAN THEOREM 7

Theorem C. The statement of Theorem B remains true if » is re-

placed by 0 in (5), (2), (3) and (K).

Thus the existence of

HO
(2.1) a = lim —-        (a > 0)

t-*otF(t)

implies that both yp and F vary regularly at the origin. The converse

statement, that if either yp or F varies regularly at the origin then so

does the other (and hence the limit in (2.1) exists), is due to Hardy

and Littlewood [ó].3

The motivation for a "ratio-tauberian" theorem for the Stieltjes

transform arose from a problem in the value-distribution theory of

entire functions, where the asymptotic behavior of ratios such as

N(r, 0)/log M(r,f), as r—>», is of key interest. Here, as in the usual

notation of the theory,

M(r,f) = max | f(reis) \ ,        N(r,0) =  f   ^-dl    (if/(0) ^ 0),
« Jot

and n(t, 0) denotes the number of zeros of the entire function/ in the

disk \z\ áí.
An important role is played in this theory by functions / of the

form

■n(«+-)
v=i \        a,/

(2.2) f(z) = II   1 + — )        (0 < <hû <h+i),
v=i \        a,/

since functions with negative zeros are "extremal" for many prob-

lems. Of particular interest are the "Lindelof functions," i.e. functions

of the form (2.2) with zeros — a, distributed so regularly that

(2.3) N(r, 0) ~ rxL(r)        (0 g X < 1, r -» »),

and Valiron's Theorem A asserts that (2.3) is equivalent to

(2.4) log M(r, f) ~ (xX/sin ttX) r^L(r)        (r -► » ).

(To see this, just notice that (2.2) implies

// r \ r™ dN(t, 0)  \log Í1 + -J dn(t, 0) = r J      ——- • j

3 Actually, the relevant result in [6, Theorem 4] is stated only for the case L(t)

= constant, but the extension to general functions L varying slowly at the origin is

an easy exercise.
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Thus the Lindelöf functions satisfy

A7(r, 0) sin irA
(2.5) lim-^—-.-

<•-»» log M ir,f) tX

and the content of Theorem B is that the only functions of the form

(2.2) which satisfy (2.5) are the Lindelöf functions.

Finally, we mention a generalization of Theorem B which—as

D. Drasin has remarked—follows immediately from the above proof,

and which will be convenient to have available for use in a subsequent

paper.

Theorem B'. Let \p and F be defined as in Theorem A, and let

G C (0, °° ) be any set of the form

00

(2.6) G = U (a„, bn)        (an —» oo, bn/an —► oo).
n-l

// the limit

HO
a =      urn     -

i^«..,eO tFit)

exists and is positive, then a5¡ 1 and, if X is determined by (6),

(2.7) lim^—= (7X        (0<(t<oo)
«-.« piQ

holds for every sequence {tn} satisfying the condition

(2.8) (Ti„ EG        (0 < a < oo, « > «„(o-)).

"Locally tauberian" theorems, in which conclusions like (2.7) are

deduced from hypotheses somewhat different from those in the

above statement, have recently been established by Edrei in his

interesting paper [2].
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