## CONCERNING A CONJECTURE OF MARSHALL HALL

## RICHARD SINKHORN

Introduction. An $n \times n$ matrix $A$ is said to be doubly stochastic if $a_{i j} \geqq 0$ and if $\sum_{k=1}^{n} a_{i k}=\sum_{k=1}^{n} a_{k j}=1$ for all $i$ and $j$. The set of $n \times n$ doubly stochastic matrices is denoted by $\Omega_{n}$.

The permanent of an $n \times n$ matrix $A$ is defined by

$$
\operatorname{per} A=\sum_{\sigma} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where the sum is taken over all permutations $\sigma$ of $1, \cdots, n$.
An unresolved conjecture of B. L. Van der Waerden states that the minimal value of the permanent of the $n \times n$ doubly stochastic matrices is $n!/ n^{n}$ and is uniquely achieved at the matrix $J_{n}$ in which every element is $1 / n$. Marshall Hall has made the following observation. Let $\Lambda_{n}$ denote the collection of $n \times n(0,1)$-matrices (i.e. those for which every element is either 0 or 1 ) which have exactly three ones in each row and each column. If $A \in \Lambda_{n}$, then $\frac{1}{3} A \in \Omega_{n}$, and thus if the Van der Waerden conjecture is correct, per $\frac{1}{3} A \geqq n!/ n^{n}$, i.e. per $A$ $\geqq 3^{n} n!/ n^{n}$. Thus, in particular

$$
\operatorname{Inf}_{A \in \Lambda_{n}} \operatorname{per} A \geqq 3^{n} n!/ n^{n},
$$

and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\operatorname{Inf}_{A \in \Lambda_{n}} \operatorname{per} A\right)=+\infty . \tag{1}
\end{equation*}
$$

Marshall Hall conjectures therefore that (1) holds. It is the purpose of this paper to show that the Hall conjecture is correct independent of the correctness of the van der Waerden conjecture.

The following notations and definitions will be used. An $n \times n$ matrix $A$ is said to be partly decomposable if there exist permutation matrices $P$ and $Q$ such that $P A Q$ has the form

$$
\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right)
$$

where $B$ and $D$ are square. If no such $P$ and $Q$ exist, the matrix is said to be fully indecomposable. If $A$ is fully indecomposable, but is such that if any single $a_{i j} \neq 0$ in $A$ is replaced by 0 the resulting

[^0]matrix becomes partly decomposable, then $A$ is said to be nearly decomposable. An important theorem concerning nearly decomposable matrices follows. A proof may be found in [2].

Theorem 1. Let $A$ be a nonnegative $n \times n$ nearly decomposable ( 0,1 )matrix where $n>1$. Then there exist permutation matrices $P$ and $Q$ and an integer $s>1$ such that

$$
P A Q=\left(\begin{array}{lllllll}
A_{1} & 0 & 0 & \cdots & 0 & 0 & E_{1}  \tag{2}\\
E_{2} & A_{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & E_{3} & A_{3} & \cdots & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & E_{t-1} & A_{s-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & E_{s} & A_{s}
\end{array}\right),
$$

where each $E_{i}$ has exactly one entry equal to 1 and each $A_{i}$ is nearly decomposable.

A set of elements $a_{1 \sigma(1)}, \cdots, a_{n \sigma(n)}$ in an $n \times n$ matrix $A$, where $\sigma$ is a permutation of $1, \cdots, n$, is called a diagonal of $A$.

## Results and consequences.

Lemma 1. Let $u$ be a positive integer and suppose that $v_{1} \geqq v_{2} \geqq$ $\geqq v_{u} \geqq 3$. Then

$$
\prod_{k=1}^{u} v_{k}-u-\sum_{k=1}^{u} v_{k}+1 \geqq 0
$$

Proof. The result holds for $u=1$. If it holds for $u$, then

$$
\begin{aligned}
\prod_{k=1}^{u+1} v_{k}-(u+1)-\sum_{k=1}^{u+1} v_{k}+1 & =v_{u+1} \prod_{k=1}^{u} v_{k}-u-\sum_{k=1}^{u+1} v_{k} \\
& \geqq v_{u+1}\left(u+\sum_{k=1}^{u} v_{k}-1\right)-u-\sum_{k=1}^{u+1} v_{k} \\
& =\left(v_{u+1}-1\right) u+\left(v_{u+1}-1\right) \sum_{k=1}^{u} v_{k}-2 v_{u+1} \\
& \geqq 2 u+2 v_{u}-2 v_{u+1} \\
& \geqq 2 u \geqq 2>0
\end{aligned}
$$

completing the induction.
Lemma 2. Let $u$, $p$, and $q$ be integers where $u \geqq 1$ and $0 \leqq p \leqq q$, and suppose that $v_{1} \geqq v_{2} \geqq \cdots \geqq v_{u} \geqq 3$. Then

$$
1+2^{p} 3^{q-p} \prod_{k=1}^{u} v_{k} \geqq u+3 q+\sum_{k=1}^{u} v_{k} .
$$

Proof. Put $f(x)=2^{x} \prod_{k=1}^{u} v_{k}-u-3 x-\sum_{k=1}^{u} v_{k}+1$. By Lemma 1,

$$
f(0)=\prod_{k=1}^{u} v_{k}-u-\sum_{k=1}^{u} v_{k}+1 \geqq 0
$$

and

$$
f(1)=2 \prod_{k=1}^{u} v_{k}-u-3-\sum_{k=1}^{u} v_{k}+1=f(0)+\left(\prod_{k=1}^{u} v_{k}-3\right) \geqq 0 .
$$

If $x \geqq 1$,

$$
f^{\prime}(x)=2^{x}\left(\prod_{k=1}^{u} v_{k}\right) \ln 2-3 \geqq 2 \cdot 3 \ln 2-3=3(\ln 4-1)>0 .
$$

Thus $f(x) \geqq f(1) \geqq 0$ if $x \geqq 1$. Then since $2^{p} 3^{q-p} \geqq 2^{q}$,

$$
2^{p} 3^{q-p} \prod_{k=1}^{u} v_{k}-u-3 q-\sum_{k=1}^{u} v_{k}+1 \geqq f(q) \geqq 0
$$

Lemma 3. Let $A$ be an $n \times n$ nearly decomposable ( 0,1 )-matrix with at least two and not more than three ones in each row. If at least one row of $A$ contains three ones, then per $A \geqq 3$.

Proof. It follows from the Frobenius-König Theorem [1, pp. 9798] that every positive element in a nonnegative fully indecomposable matrix lies on a positive diagonal. Assume $A$ to be in the form (2). Then some $A_{i}$ is at least $2 \times 2$ and therefore has at least two positive diagonals. Whence per $A_{i} \geqq 2$. Allowing for at least one positive diagonal of $A$ to pass through the $E_{i}$, we see that per $A \geqq 1+\prod_{i=1}^{s}$ per $A_{i} \geqq 1+2=3$.

Lemma 4. If in a fully indecomposable ( 0,1 )-matrix a zero is replaced by 1 , the permanent is increased.

Proof. If $A$ is a fully indecomposable ( 0,1 )-matrix and if $B$ is obtained from $A$ by replacing a zero by 1 , then $B$ is still fully indecomposable. By the Frobenius-König Theorem every 1 in $B$, including the 1 not in $A$, lies on a positive diagonal. Thus $B$ has at least one more positive diagonal than does $A$. Hence per $B>$ per $A$.

Theorem 2. Let $A$ be a nearly decomposable $n \times n(0,1)$-matrix with $m$ rows containing exactly three ones and $n-m$ rows containing exactly two ones. Then per $A \geqq m$.

Proof. The proof is by induction on $n$. We must have $n \geqq 2$, and if $n=2$, then $m=0$ and the result holds. In fact, if $m=0$, the result holds for all $n \geqq 2$; whence if $n>2$ we suppose that $m>0$. We may assume that $A$ is in the form (2). Since $m>0$, at least one of the $A_{i}$ 's must be larger than $1 \times 1$. Suppose that $A_{i_{1}}, \cdots, A_{i_{r}}$ are at least $2 \times 2$ and that each of $A_{i_{1}}, \cdots, A_{i_{p}}, p \leqq r$, has exactly two ones in each row (and thus in each column) while $A_{i_{p+1}}, \cdots, A_{i_{r}}$ have $m_{p+1}, \cdots, m_{r}$ rows with three ones, respectively. Note that $m=r$ $+\sum_{k=p+1}^{r} m_{k}$. Let $m_{k} \leqq 2$ for $k=p+1, \cdots, t$, and $m_{k} \geqq 3$ for $k=t+1$, $\cdots, r$. Then by Lemma 3 and the induction hypothesis, per $A_{i_{k}} \geqq 3$ for $k=p+1, \cdots, t$ and per $A_{i_{k}} \geqq m_{k}$ for $k=t+1, \cdots, r$. Since per $A_{i_{k}}=2$ for $k=1, \cdots, p$, we have, allowing for at least one positive diagonal through the $E_{i}$,

$$
\text { per } A \geqq 1+\prod_{k=1}^{r} \text { per } A_{i_{k}} \geqq 1+2^{p} 3^{t-p} \prod_{k=t+1}^{r} m_{k} .
$$

The proof will be complete if we show that $1+2^{p} 3^{t-p} \prod_{k=t+1}^{r} m_{k} \geqq r$ $+\sum_{k=p+1}^{r} m_{k}$. If $t=0$, then $p=0$, and the result is an immediate consequence of Lemma 1 . Hence suppose $t>0$. If $t=r$, the inequality becomes $1+2^{p} 3^{t-p} \geqq t+\sum_{t=p+1}^{t} m_{k}$. We prove this by showing that $1+2^{p} 3^{t-p} \geqq 3 t-2 p$. This is clear for $p=0$. If $0<p \leqq t$, we have

$$
1+2^{p} 3^{t-p} \geqq 1+2^{t}>3 t-2 \geqq 3 t-2 p
$$

Then since $m_{k} \leqq 2$ if $k=p+1, \cdots, t$,

$$
\sum_{k=p+1}^{t} m_{k} \leqq 2(t-p)
$$

Thus

$$
1+2^{p} 3^{t-p} \geqq t+2(t-p) \geqq t+\sum_{k=p+1}^{t} m_{k}
$$

Whence we can assume that $r>t$. Then by Lemma 2,

$$
1+2^{p} 3^{t-p} \prod_{k=t+1}^{r} m_{k} \geqq(r-t)+3 t+\sum_{k=t+1}^{r} m_{k}=r+2 t+\sum_{k=t+1}^{r} m_{k}
$$

But $\sum_{k=p+1}^{t} m_{k} \leqq 2(t-p) \leqq 2 t$, if $t>p$, so $r+2 t+\sum_{k=t+1}^{r} m_{k} \geqq r$ $+\sum_{k=p+1}^{r} m_{k}$, and the result follows.

Theorem 3. If $A$ is a fully indecomposable member of $\Lambda_{n}$ then per $A \geqq n$.

Proof. If a certain set of ones in $A, k$ in number, are replaced by zeros, there results a nearly decomposable matrix $A^{\prime}$. The matrix $A^{\prime}$, being fully indecomposable, has at least two ones in every row (and column), and, of course, no more than three. Thus the $k$ ones were removed from $k$ different rows (and columns). $A^{\prime}$ has $k$ rows with exactly two ones and $n-k$ rows with exactly three ones. By Theorem 2 , per $A^{\prime} \geqq n-k$. But by Lemma $4, A$ has at least $k$ more positive diagonals than did $A^{\prime}$ (one at least for each of the $k$ ones removed). Thus per $A \geqq k+(n-k)=n$.

Theorem 4. $\operatorname{Inf}_{A \in \Lambda_{n}}$ per $A \geqq n$.
Proof. Suppose $A_{0} \in \Lambda_{n}$ is partly decomposable. By permuting rows and columns we may suppose that

$$
A_{0}=\left(\begin{array}{ll}
A_{1} & 0 \\
B & A_{2}
\end{array}\right)
$$

where $A_{1}$ is $r \times r$ and $A_{2}$ is $(n-r) \times(n-r)$. Then since the row sums of $A_{0}$ are all 3 , the sum of the elements in $A_{1}$ is $3 r$. This is precisely the sum of the elements in $A_{1}$ and $B$. Thus $B=0$ and in fact $A_{0}$ $=A_{1} \oplus A_{2}$, where $A_{1} \in \Lambda_{r}$ and $A_{2} \in \Lambda_{n-r}$. Clearly the process can be continued so that

$$
P A_{0} Q=A_{1} \oplus \cdots \oplus A_{k}
$$

for some permutation matrices $P$ and $Q$, where the $A_{j}$ are fully indecomposable matrices in $\Lambda_{n_{j}}, j=1, \cdots, k$. Hence, by Theorem 3, per $A_{j} \geqq n_{j}$. Now each row of $A_{j}$ has three ones and therefore $n_{j} \geqq 3$, $j=1, \cdots, k$, and we have

$$
\text { per } A_{0}=\prod_{j=1}^{k} \operatorname{per} A_{j} \geqq \prod_{j=1}^{k} n_{j} \geqq \sum_{j=1}^{k} n_{j}=n \text {, }
$$

where equality can occur only if $k=1$.
The Marshall Hall conjecture stated in (1) is now immediate.

## References

1. Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, 1964.
2. Richard Sinkhorn and Paul Knopp, Problems involving diagonal products in nonnegative matrices, Trans. Amer. Math. Soc. 136 (1969), 67-75.

University of Houston


[^0]:    Presented to the Society, August 30, 1968; received by the editors January 19, 1968.

