TRANSLATES ARE ALWAYS DENSE ON THE HALF LINE

DONALD J. NEWMAN¹

Let f(x) be a nontrivial function in $L^1(-\infty, \infty)$. The celebrated theorem of Wiener tells us exactly when the linear combinations of the translates of this function are dense in $L^1(-\infty, \infty)$. [Namely, when the Fourier transform of f has no zeros.] Suppose we ask, however, when these translates are dense in $L^1(0, \infty)$. The surprising answer is: always.

Similar remarks hold for the other L^p classes and also for some sets slightly larger than the half line but we omit the details. We prove only the

THEOREM. If f(x) is any nontrivial function in $L^1(-\infty, \infty)$ then the translates of f(x) span all of $L^1(0, \infty)$.

The first step of the proof is Wiener's "localization" lemma, see [1]. Writing $\hat{f}(x)$ for the Fourier transform of f(x) and introducing the usual "triangle" function $T_{\xi,\delta}(x) = (\delta - |x - \xi|)_+$ we have

LEMMA 1. If $\hat{f}(x)$ has no zeros in [a, b] then for sufficiently small $\delta > 0$ and all ξ in $[a+\delta, b-\delta]$ the quotient $T_{\xi,\delta}(x)/\hat{f}(x)$ is the Fourier transform of an $L^1(-\infty, \infty)$ function.

We also need the following simple lemma

LEMMA 2. If F(x) is $L^1(0, \infty)$ and non-0 a.e. and if ξ varies through a set of positive measure then the collection of functions $\{F(x)e^{i\xi x}\}$ spans $L^1(0, \infty)$.

PROOF. Suppose $G(x) \in L^{\infty}(0, \infty)$ were orthogonal to each of the $F(x)e^{i\xi x}$, that is that $\int_0^{\infty} G(x) F(x)e^{i\xi x} dx = 0$ for all such ξ . The function defined by $\phi(z) = \int_0^{\infty} G(x) F(x)e^{izx} dx$ is clearly analytic in Im z > 0 and continuous in Im $z \ge 0$. Vanishing on a set of positive measure is impossible for the boundary values of such an analytic function unless the function vanished identically. Thus $\phi(z) \equiv 0$ and so F(x)G(x) = 0 a.e., and so G(x) = 0 a.e. This proves that our collection does indeed span. Our theorem now follows easily. By Lemma 1 we have $T_{\xi,\delta}(x) = \hat{f}(x)\hat{g}(x)$ for some $g \in L^1(-\infty, \infty)$ and so, taking inverse transforms, we have

$$e^{i\xi x}\frac{\sin^2\delta x}{\pi x^2}=\int_{-\infty}^{\infty}f(x+t)g(-t)dt.$$

Received by the editors August 10, 1968.

¹ Partially supported by the National Research Council of Canada during a visit to the University of Alberta.

Since the right-hand side is clearly spanned by translates of f we conclude that all the functions $e^{i\xi x}F(x)$ are so spanned for $\xi \in [a+\delta, b-\delta]$, $F(x) = \sin^2 \delta x/\pi x^2$. In turn these functions span $L^1(0, \infty)$ by Lemma 2 and the proof is complete.

REFERENCE

1. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949, pp. 290-291.

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY