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1. In discussing the nonlinear approximations of A. G. Vitushkin

[2], G. G. Lorentz [l] points out a discrepancy between Vitushkin's

definition of the degree of an algebraic polynomial in several variables

and the usual definition of algebraic geometry. Lorentz observes that

Vitushkin's reliance on a theorem of algebraic geometry makes this

deviation unjustified. This paper is written to substantiate Lorentz

and begin to fill the resulting gap in Vitushkin's theory.

Vitushkin considers, among others, approximating families F, in a

real normed linear space L, of the form

(1) F= {Pit): t ER»),

where p{t) is a polynomial in the co-ordinates i,- of f with coefficients

in L. The ability of such an F to approximate other subsets of L is

measured by the number of parameters « and the degree d of p as a

polynomial. The problem lies in defining this d.

As defined in algebraic geometry and as used in this paper, the

degree of a polynomial in several variables is the maximum sum of

the exponents occurring in any one power product. Vitushkin uses,

instead, the maximum exponent of any single variable. I will refer to

this latter number as the "coarse degree" of a polynomial.

For a given normed linear space L and subsets K and F of L, let

D{K,F) = sup inf ||*-y||.
x£K   ysF

Define Dni{K) to be the infimum of all D{K, F) where F is of the

form (1) and p has degree at most d. Define Vnd(K) in the same way

except let p have coarse degree at most d. Since this latter condition

is less restrictive, we always have Vn¿ ú Dnl¡ for any fixed K.

Vitushkin devotes the last three chapters of [2] to determining

the asymptotic behavior of Vnd as n and d increase. In §2 we state

his upper bound for Vnd as Theorem A. The lower bounds which

Vitushkin gives ostensibly for Vni are in fact lower bounds for D„i,

because they depend on results from algebraic geometry. As an ex-

ample, the lower bound implicit in [2, Theorem 1, §36, p. 206] de-

pends ultimately on [2, Lemma 3, §24, p. 154], which is a geometric

result. For some sets K the upper bound of Theorem A is of the same
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order as the lower bound for Dnd(K). If V„d and Dnd were themselves

of the same order, one would have a "best possible" result. §2, how-

ever, shows that Vnd can tend to zero much faster than D„d.

§3 shows that in one classical case, Vitushkin's lower bounds on

Dnd are nevertheless "best possible."

All logarithms in this paper are taken base two.

2. Let ii be a compact subset of a real normed linear space L. Let

He(K) be the e-entropy of K. The following result was proved by

Vitushkin for L a Euclidean space [2, §29, p. 173, Theorem l] and

is easily extended.

Theorem A. If« log(d + l) ^Ht(K), then V„d(K) <e.

Proof. If a minimal e-net for K contains h points, then by defini-

tion, Ht(K) =log h. Exponentiating both sides of the inequality in the

hypothesis gives (d + l)n=ï h. Order the (¿ + 1)" power products which

occur in the general polynomial in n variables of coarse degree d as

entries in a vector. Choose h points t = (ti, ■ ■ ■ , tn) such that evalu-

ating this vector at the points r gives h linearly independent vectors.

This is possible since the power products are linearly independent

functions.

Let p(t) be as in (1) and have coarse degree d. Write down h equa-

tions p(t) =x, where the x are the points of the minimal e-net and the

r are some ordering of the points chosen above. These equations are

linear in the coefficients of p, which are elements of the linear space L.

Since by choice of the points t the equations are independent, we can

solve for the coefficients of p and obtain an approximating family of

the form (1) which contains the given e-net. This proves the theorem.

We now examine a particular K. Let L be I2. Denote by e„ the se-

quence in I2 with a one in the wth place and zeroes elsewhere. The set

K will consist of the origin and all the points ± e„/n.

Theorem 1. Let K be as defined above. If w = 4, then Vni(K) <22~n

andDni(K)^n-*\

Proof. The 2m+ 1 points 0, +ei/l, • • • , ±em/m are a 1/m-net

for K. Put w = 2"-1-l, so that 2n>2w-fT. Theorem A, with ¿ = 1,

shows that Vni(K)<l/m, and « = 2 implies l/m^22-\

The number Dni(K) is the infimum of all D(K, F) where F is an

«-dimensional linear manifold in I2. The set K is symmetric about the

origin; thus for the infimum we need consider only subspaces of

dimension n. Let Rn+1 be the subspace spanned by ei, • • • , en+i.

For any n-dimensional subspace F let F* be an w-dimensional sub-
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space of R"+1 containing the orthogonal projection of F into Rn+1.

Let v = {vi) be one of the two unit vectors in Rn+l perpendicular to

F*. When ¿^« + 1, the distance from e,-/t to F* is |»,-| /*. If s is the

greatest of these n+1 distances, we have

tV + 22 +••• + (« + i)J) à •!+••• + Ci = 1,

because v is a unit vector. Estimating the sum of the first « + 1

squares, one sees that i^«-3'2, «3:4.

Now s is D(K~r\Rn+1, F*), which, since F* contains the orthogonal

projection of F into Rn+l, is less than or equal to D{KC\Rn+l, F). This

number is in turn less than or equal to D{K, F). Since F was an arbi-

trary subspace of dimension «, the theorem follows from D{K, F)
^«_3/2.

3. Let a) be a modulus of continuity function. Denote by A" those

real valued functions on [O, 1 ] which vanish at zero and have modulus

of continuity less than or equal to w. This section will establish

Theorem 2. Put

e = 6w(1/h log(á + 1)).

In the space of real continuous functions on [0, 1 ] with the uniform norm

we have Dna{A")^t.

Proof. We will first construct a simple set E which closely approxi-

mates A" and then an approximating family F of the form (1) and

degree d which contains E.

For d^2, let k be the integer such that 2*3ád<2*+1. If d is one,
let k be one also. Take as the elements of E the 2nh continuous func-

tions on [O, l] which vanish at zero and have constant slope of

±nkco{l/nk) in each successive interval of length l/nk beginning at

zero. Given an/ in A" we can determine a g in £ a distance not more

than 3o){l/nk) away. Indeed, if at the initial point of one of the suc-

cessive intervals of length l/nk we have g less than/, let g have posi-

tive slope in that interval, otherwise negative slope. We start this

inductive construction at zero, where both/and g vanish.

To see that g never deviates from / by more than 3w{l/nk), let

[a, b] be one of the successive intervals of length l/nk on which g is

linear. Fix a point x in [a, b]. The modulus of continuity function w

dominates the modulus of continuity of/, so

/(a) - u(x -a) ^ f{x) g /(a) + «t> - a).

Since w is monotone, we have w{x—a)^oi{l/nk). Supposing that

g{a) is less than f{a), we have
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f(x) - g(x) = f(x) - g(a) - nku(i/nk)(x - a).

From this expression and the two preceding inequalities, it follows

thatf (a)-g(a)-2a(l/nk)£f(x)~ g(x)^f (a)-g(a)+cc(l/nk) and more

specifically that

f(a) - g(a) - 2o>(lInk) g f(b) - g(b) = f(a) - g(a).

We see that if/ and g differ by at most 2co(l/nk) at the initial point

of the interval, then they differ by no more than that at the final

point and by no more than 3o¡(í/nk) in between. A similar argument

works when g(a) ^f(a). Now/ and g are both zero at zero, and we can

use the above reasoning, interval by interval, to show that g is no

more than 3o¡(l/nk) from/.

At this point, note that 3o¡(l/nk)^e. For by the subadditivity of

w, 3o¡(\/nk) ¿6u(l/2nk). The desired inequality now follows from

the monotonicity of w and the relation n log(¿+l) ^2nk, which comes

from the definition of k.

It remains only to construct the family F containing E. For each

i from 1 to n apply the technique of Theorem A to get a family F,(0

of the form (1) with tER1 and degree of the polynomial p equal to d.

This Fi is to contain the 2*^¿+l continuous functions on [0, l]

which

(1) vanish at and to the left of (i — Y)/n;

(2) have constant slope ±nku(l/nk) in each of the k succeeding

intervals of length i/nk;

(3) are constant to the right of i/n.

For t = (tu • • • , O, put

F(t)   = Fi(ti) +   •  •  •  + Fn(ln).

To obtain any function g in the set E as a member of F, choose h to

get the right sequence of slopes in [0,1/«], h for the slopes in [l/n,2/n],

and so on.

This theorem amounts to one half of determining the asymptotic

behavior of Dnd(A"). The other half, after one clarifies the matter of

"degree", can be read from [2, Theorem 1, §38, p. 219]. Namely,

there is a constant B independent of n, d and w such that Dnd(A")

^Be, where e is the quantity in the statement of Theorem 2.
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