
COMPLETENESS PRESERVING MULTIPLIERS1

J. S. BYRNES2 AND D. J. NEWMAN3

Given a (p(x)ELx{—it, it), so that <p is a multiplier on L2{—tt, it),

it is interesting to ask when the following implication holds:

(1) If j^njn—» is any complete orthonormal set (CONS) for L2

and if S is any subset of the integers, then the new set {<p„} 1X defined

by <Pn—^n for nES, <pH=<í>^n for n(£S, is also complete in L2.

The following theorem gives a rather simple necessary and suffi-

cient condition for (1).

Theorem I. (1) holds if and only if there exists a complex number a

such that

(i) Re aob è 0 almost everywhere {a.e.), and

(*) (ii) either Im ad> > 0 a.e. or Im octp < 0 a.e.

on the zero sel Z of Re ad>.

Proof. Suppose first that (*) holds. Let/be any L2 function orthog-

onal to all the <pn, so that

(2) I   f{x)fa{x)-dx = 0   for « G S    and

(3) j   f{x)ä<j>{x)-^n{x)-dx = 0   for nET

(where g{x)~ denotes the complex conjugate of g{x) and T = comp

(S)).
Now (2) says that the Fourier series of/ is given by

/(*) ~ 2 an\f/„{x),

and if we let the partial sum of this Fourier series be

(4) SN{f, x) =      £     ^n{x)

we see that (3) and (4) yield
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(5) j f(x)äd>(x)-SN(f, x)~dx « 0,       N = 1, 2, 3,

By the L2 convergence of the Fourier series we can let N—»°o in (5),

and we get

(6) f   \f(x)\2ad>(x)-dx = 0.

Thus/ = 0 a.e. where Re a0>O, so that

(7) f | /(*) \2&<t>(x)-dx =  f I /(*) |2 Im ä<p(x)-dx = 0.

Combining the above with (ii) we see that/=0 a.e., so {^n} is

complete.

We now assume that (*) is false and thereby produce a function

w(x)ELl(—ir, it) satisfying

(8) u(x) = 0, w(x)dx = 1,   and      I    ic(x)q>(x)dx — 0.

Indeed, suppose no such u(x) exists. Then the linear functional

A:f—*fl,f(x)<l>(x)dx on Ll(—ir, t) is never 0 on the convex set

K= {o¡ELx: o) = 0, flr u(x)dx = l}, so that A(K) is a convex subset

of the plane which misses 0. This assures the existence of a complex

number a satisfying

(9) Re a I    (o(x)<¡¡(x)dx _ 0       for every « E K   and

(10) a I    o¡(x)<p(x)dx 9* 0       for any w E K.

By (9) we see that (i) holds. But (ii) must also hold, since all other

cases are clearly excluded by (10). Thus (*) holds, and this contra-

diction establishes the existence of a function uEL1(—t, it) satisfying

(8).
If we now let {^„} be any CONS with 1^0= (w(x))1'2 and choose

F= ¡0} then the set {(pn} which is thereby generated is orthogonal

to the function (co(x))112. This means indeed that (1) does not hold,

and completes the proof.

If we no longer consider an arbitrary CONS but restrict our atten-

tion to the standard one \pn(x)=einx our multiplier can be any L2

function, it need not be bounded. Thus, for each <j>EL2, we wish to

know if the following implication holds:
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(11) If we break up the integers arbitrarily into two disjoint sets

S and T, and if we let (pn{x) = einx for »£S and (p„{x) = <p{x)einx for

nET, then {<p„} is complete in L2.

In this situation the question of necessary and sufficient conditions

is left open. It appears to be a difficult one.

If <p{x) is bounded and satisfies (*) for some a we see that Theorem

I applies and (11) holds. If we assume only that (*) holds without

requiring that<£ be bounded then (11) need not hold, as the following

example demonstrates.

Example (i). We define two functions / and <p by

1 I 1 - el2"
(12) f{z) =-—   and   4>{z)~ « i—-L_ .

(1   —   Z)1/5 1—3

Since Re (1/(1—2)) =5 for \z\ =1 we see that

(13) Re 4>{z) > 0 a.e.       for | 21   =1.

In addition, it is obvious from (12) that

(14) / £ L2{-t, r)    and   <p E L2{-ir, r).

Furthermore, for z=eiz and z=e~iz we have

// w *         I 1 - z\m      O - »)w,0 - 2)1"
f{z)4>{z)~ =-=-

(1   _  ¡i)4/! (1-8)«/»

(15)
(1   -   2)1'8 _ -2

I-I/2 (1 - z)2'3 '

But (12) and (15) show that, when looked at as functions on the circle

—it ^x<7r,f has no negative Fourier coefficients and/-# has no non-

negative Fourier coefficients, i.e.,

/'
f{eix)e~inxdx = 0       for n < 0   and

f{eix)<p{eix)-e-inxdx = 0       for n ^ 0.
/:

Thus, if we take ¡pn{x) =einx for «<0 and <p„{x) =<j>{eix)e<nx for w^O

we see from (13), (14) and (16) that we have a counterexample to

(11).
The following theorem shows that (11) is equivalent to an interest-

ing uniqueness property for k series.
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Theorem IL (11) is equivalent to:

(17) Suppose that {an} Eh and {cn} Eh, that <f>(x) = ]T) 1>—« cne~inz

and that an(a*c)n sO, where (a*c)n= 2Zl_» a*Cn-t- Then an=0.

(Note. By equivalent we mean that (11) holds for <j>(x) if and only if

(17) holds for the same 4>(x).)

The trivial proof, which consists of showing that a counterexample

to (11) leads directly to a counterexample to (17) and viceversa, is

omitted.

If we state Theorem I in terms of (17) we get

Theorem III. Let {an}Eh and [cn}Eh and define <¡>(x)

= ^2ñ—«= cne~inx. Suppose that <j> is bounded, that (*) holds for some a,

and that an(a * c)n — 0. Then an — 0.

One special set of circumstances under which (17) holds is given by:

Theorem IV. Suppose that in addition to the hypotheses of (17) we

also have (*) holds and {(a * c)n} Eh- Then a» = 0.

Proof. By hypotheses 22»=-» än(a * c)„ = 0. Since {(a * c)„} Eh we

can apply Parseval's formula to this equation, and we get

(18)
/T OO

\f(x)\2<t>(x)dx = 0        wheref(x) =   23 a»*~<n*-
—ir n=—oo

Since (*) holds (18) shows that/=0 a.e., or <z„sO.

Note that Theorem IV shows that if we have a counterexample to

(11) with (*) holding the L2 function/which is orthogonal to all the

<pn cannot be such that f-<j>EL2.

The questions with which we dealt above can also be asked for

function spaces other than L2( — t, t). In particular, if we are given a

<f>ELp(—ir, t) for some p, ÍH.pú'*', we can ask whether {<pn} is

complete in L>, where <p« are those given in (11). With a few minor

modifications the proof of the "if" half of Theorem I applies to the

following result.

Theorem V. Suppose that l^p<2, that (*) holds for some a, and

that <t>ELvn2~v). Then {¡p„} is complete in Lp.

If 1 <p < » and a is any number such that

(19) (p - \)/2p <a<(p- \)/p = \/q,

and if we define two functions / and <j> by

1 I 1 - z\2a
(20) }(z) --    and   <t>(z)~ = —-,

(1 — Z)° 1 —  £
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then seen we see that, using the method of Example (i), we have a coun-

terexample to (11) for Lp{—ir, ir) with 1 <p< 00, where Re 0>O a.e.

Note that if p<2 (19) and (20) show that the number p/{2-p) given

in Theorem V is best possible. If p>2 (19) assures that we can take

a>%, so that in this case we actually do have a bounded counter-

example !

Finally, we consider the space C of continuous functions on the

circle (i.e., continuous and periodic with period 2ir), and we ask

whether {<pn} given by (11) is complete in C.

If 0 is "smooth" enough and satisfies the usual "direction property"

we see by the following theorem that we have completeness.

Theorem VI. Suppose <p is a C2 function on [—t, tt] and Re a<f>>0

for some a. Then {<pn} is complete in C.

To prove this theorem we observe that the Fourier coefficients cn

of c/> certainly satisfy £"=_«, \n\ 1/2|ci| < °° and then apply a result

given in [l]. Since it would require the development of a new topic

to even state this result we refer the reader to [l, Corollary III.2],

We conclude our work by producing a counterexample to Theorem

VI when we do not assume the added restriction that <j>EC2.

Example (ii). We construct a function <p and a nonzero measure dy

such that:

(21) <t>EC   and    Re q> > 0,

(22) I    e~inxdy{x) =0       for n > 0    and

(23) I    d>{x)e~inxdy{x) =0       for n è 0.

(22) is equivalent to

(24) dy{x) = f{eix)~dx       where/ £ H1 of the unit disk.

Combining (23) and (24) we get <p{x)f{eix)~ — eixg{eix) where gEH1.

Thus, we want to find two functions/ and g such that

(25) / and g are in H1 of the disk and

(26) <p{z) = zg{z)/f{z) is continuous and has positive real part

for z — eix, — tt^x^tt. This is done by letting

(27) f{t) = g{z) = f(l - s)-1 log"3'2
&
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where N is any positive number large enough so that

(28)       Re log3 (-J > 0       for 2 = eix,        -t á *

It is obvious that/ and g satisfy (25), and we have

zf       zp
<b(Z) = 4 =

7        l/l2

-*(l - 2)-2 log~3(:¡-^)

-3

<29) j- " \

logÖ
Combining (28) and (29) we see that Re <¡>>0. Since \<t>(z)\ =1 for

z = eix to show <¡> is continuous it is only necessary to show that it has

a continuous argument. The only possible trouble could be at x = 0,

but it is clear from (28) and (29) that as x—»0 from either direction

<b(e")—»1. This shows that0 satisfies (26) and completes Example (ii).
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