COMPLETENESS PRESERVING MULTIPLIERS1

J. S. BYRNES² AND D. J. NEWMAN³

Given a $\phi(x) \in L^{\infty}(-\pi, \pi)$, so that ϕ is a multiplier on $L^{2}(-\pi, \pi)$, it is interesting to ask when the following implication holds:

(1) If $\{\psi_n\}_{n=-\infty}^{\infty}$ is any complete orthonormal set (CONS) for L^2 and if S is any subset of the integers, then the new set $\{\varphi_n\}_{-\infty}^{\infty}$ defined by $\varphi_n = \psi_n$ for $n \in S$, $\varphi_n = \phi \cdot \psi_n$ for $n \notin S$, is also complete in L^2 .

The following theorem gives a rather simple necessary and sufficient condition for (1).

Theorem I. (1) holds if and only if there exists a complex number α such that

(i) Re $\alpha \phi \geq 0$ almost everywhere (a.e.), and

(*) (ii) either Im
$$\alpha \phi > 0$$
 a.e. or Im $\alpha \phi < 0$ a.e. on the zero set Z of Re $\alpha \phi$.

PROOF. Suppose first that (*) holds. Let f be any L^2 function orthogonal to all the φ_n , so that

(2)
$$\int_{-\pi}^{\pi} f(x)\psi_n(x)^- dx = 0 \text{ for } n \in S \text{ and}$$

(3)
$$\int_{-\pi}^{\pi} f(x) \bar{\alpha} \phi(x)^{-} \psi_n(x)^{-} dx = 0 \quad \text{for } n \in T$$

(where $g(x)^-$ denotes the complex conjugate of g(x) and T = comp(S)).

Now (2) says that the Fourier series of f is given by

$$f(x) \sim \sum_{n \in T} a_n \psi_n(x),$$

and if we let the partial sum of this Fourier series be

$$(4) S_N(f, x) = \sum_{n \in T: |n| \le N} a_n \psi_n(x)$$

we see that (3) and (4) yield

Received by the editors July 31, 1967 and, in revised form, March 21, 1968.

¹ Part of this was taken from the first author's doctoral thesis and was supported by the United States Steel Foundation and Yeshiva University.

² NRC-NRL Postdoctoral Research Associate.

³ Both authors were supported by NSF grant #GP4391.

(5)
$$\int_{-\pi}^{\pi} f(x) \bar{\alpha} \phi(x)^{-} S_{N}(f, x)^{-} dx = 0, \qquad N = 1, 2, 3, \cdots.$$

By the L^2 convergence of the Fourier series we can let $N \rightarrow \infty$ in (5), and we get

(6)
$$\int_{-\pi}^{\pi} |f(x)|^2 \overline{\alpha} \phi(x)^{-} dx = 0.$$

Thus f = 0 a.e. where Re $\alpha \phi > 0$, so that

(7)
$$\int_{\mathcal{Z}} |f(x)|^2 \overline{\alpha} \phi(x)^- dx = \int_{\mathcal{Z}} |f(x)|^2 \operatorname{Im} \overline{\alpha} \phi(x)^- dx = 0.$$

Combining the above with (ii) we see that f=0 a.e., so $\{\varphi_n\}$ is complete.

We now assume that (*) is false and thereby produce a function $\omega(x) \in L^1(-\pi, \pi)$ satisfying

(8)
$$\omega(x) \ge 0$$
, $\int_{-\pi}^{\pi} \omega(x) dx = 1$, and $\int_{-\pi}^{\pi} \omega(x) \phi(x) dx = 0$.

Indeed, suppose no such $\omega(x)$ exists. Then the linear functional $\Lambda: f \to \int_{-\pi}^{\pi} f(x)\phi(x)dx$ on $L^1(-\pi, \pi)$ is never 0 on the convex set $K = \{\omega \in L^1: \omega \geq 0, \int_{-\pi}^{\pi} \omega(x)dx = 1\}$, so that $\Lambda(K)$ is a convex subset of the plane which misses 0. This assures the existence of a complex number α satisfying

(9) Re
$$\alpha \int_{-\pi}^{\pi} \omega(x)\phi(x)dx \ge 0$$
 for every $\omega \in K$ and

(10)
$$\alpha \int_{-\pi}^{\pi} \omega(x) \phi(x) dx \neq 0 \quad \text{for any } \omega \in K.$$

By (9) we see that (i) holds. But (ii) must also hold, since all other cases are clearly excluded by (10). Thus (*) holds, and this contradiction establishes the existence of a function $\omega \in L^1(-\pi, \pi)$ satisfying (8).

If we now let $\{\psi_n\}$ be any CONS with $\psi_0 = (\omega(x))^{1/2}$ and choose $T = \{0\}$ then the set $\{\varphi_n\}$ which is thereby generated is orthogonal to the function $(\omega(x))^{1/2}$. This means indeed that (1) does not hold, and completes the proof.

If we no longer consider an arbitrary CONS but restrict our attention to the standard one $\psi_n(x) = e^{inx}$ our multiplier can be any L^2 function, it need not be bounded. Thus, for each $\phi \in L^2$, we wish to know if the following implication holds:

(11) If we break up the integers arbitrarily into two disjoint sets S and T, and if we let $\varphi_n(x) = e^{inx}$ for $n \in S$ and $\varphi_n(x) = \varphi(x)e^{inx}$ for $n \in T$, then $\{\varphi_n\}$ is complete in L^2 .

In this situation the question of necessary and sufficient conditions is left open. It appears to be a difficult one.

If $\phi(x)$ is bounded and satisfies (*) for some α we see that Theorem I applies and (11) holds. If we assume only that (*) holds without requiring that ϕ be bounded then (11) need not hold, as the following example demonstrates.

Example (i). We define two functions f and ϕ by

(12)
$$f(z) = \frac{1}{(1-z)^{1/3}} \text{ and } \phi(z)^{-} = \frac{\left| 1-z \right|^{2/3}}{1-z} .$$

Since Re $(1/(1-z)) = \frac{1}{2}$ for |z| = 1 we see that

(13) Re
$$\phi(z) > 0$$
 a.e. for $|z| = 1$.

In addition, it is obvious from (12) that

(14)
$$f \in L^2(-\pi, \pi) \text{ and } \phi \in L^2(-\pi, \pi).$$

Furthermore, for $z = e^{ix}$ and $\bar{z} = e^{-ix}$ we have

(15)
$$f(z)\phi(z)^{-} = \frac{\left| 1 - z \right|^{2/3}}{(1 - z)^{4/3}} = \frac{(1 - z)^{1/3}(1 - \bar{z})^{1/3}}{(1 - z)^{4/3}} = \frac{(1 - \bar{z})^{1/3}}{(1 - \bar{z})^{2/3}} \cdot \frac{(1 - \bar{z})^{1/$$

But (12) and (15) show that, when looked at as functions on the circle $-\pi \le x < \pi$, f has no negative Fourier coefficients and $f \cdot \bar{\phi}$ has no nonnegative Fourier coefficients, i.e.,

(16)
$$\int_{-\pi}^{\pi} f(e^{ix})e^{-inx}dx = 0 \quad \text{for } n < 0 \quad \text{and}$$

$$\int_{-\pi}^{\pi} f(e^{ix})\phi(e^{ix})^{-}e^{-inx}dx = 0 \quad \text{for } n \ge 0.$$

Thus, if we take $\varphi_n(x) = e^{inx}$ for n < 0 and $\varphi_n(x) = \varphi(e^{ix})e^{inx}$ for $n \ge 0$ we see from (13), (14) and (16) that we have a counterexample to (11).

The following theorem shows that (11) is equivalent to an interesting uniqueness property for l_2 series.

THEOREM II. (11) is equivalent to:

(17) Suppose that $\{a_n\} \in l_2$ and $\{c_n\} \in l_2$, that $\phi(x) = \sum_{n=-\infty}^{\infty} c_n e^{-inx}$ and that $a_n(a * c)_n \equiv 0$, where $(a * c)_n = \sum_{k=-\infty}^{\infty} a_k c_{n-k}$. Then $a_n \equiv 0$.

(*Note*. By equivalent we mean that (11) holds for $\phi(x)$ if and only if (17) holds for the same $\phi(x)$.)

The trivial proof, which consists of showing that a counterexample to (11) leads directly to a counterexample to (17) and viceversa, is omitted.

If we state Theorem I in terms of (17) we get

THEOREM III. Let $\{a_n\} \in l_2$ and $\{c_n\} \in l_2$ and define $\phi(x) = \sum_{n=-\infty}^{\infty} c_n e^{-inx}$. Suppose that ϕ is bounded, that (*) holds for some α , and that $a_n(a*c)_n \equiv 0$. Then $a_n \equiv 0$.

One special set of circumstances under which (17) holds is given by:

THEOREM IV. Suppose that in addition to the hypotheses of (17) we also have (*) holds and $\{(a*c)_n\} \in l_2$. Then $a_n \equiv 0$.

PROOF. By hypotheses $\sum_{n=-\infty}^{\infty} \bar{a}_n (a*c)_n = 0$. Since $\{(a*c)_n\} \in l_2$ we can apply Parseval's formula to this equation, and we get

(18)
$$\int_{-\pi}^{\pi} |f(x)|^2 \phi(x) dx = 0 \quad \text{where } f(x) = \sum_{n=-\infty}^{\infty} a_n e^{-inx}.$$

Since (*) holds (18) shows that f = 0 a.e., or $a_n = 0$.

Note that Theorem IV shows that if we have a counterexample to (11) with (*) holding the L^2 function f which is orthogonal to all the φ_n cannot be such that $f \cdot \varphi \in L^2$.

The questions with which we dealt above can also be asked for function spaces other than $L^2(-\pi,\pi)$. In particular, if we are given a $\phi \in L^p(-\pi,\pi)$ for some p, $1 \le p \le \infty$, we can ask whether $\{\varphi_n\}$ is complete in L^p , where φ_n are those given in (11). With a few minor modifications the proof of the "if" half of Theorem I applies to the following result.

THEOREM V. Suppose that $1 \le p < 2$, that (*) holds for some α , and that $\phi \in L^{p/(2-p)}$. Then $\{\varphi_n\}$ is complete in L^p .

If 1 and a is any number such that

(19)
$$(p-1)/2p < a < (p-1)/p = 1/q,$$

and if we define two functions f and ϕ by

(20)
$$f(z) = \frac{1}{(1-z)^a} \text{ and } \phi(z)^- = \frac{|1-z|^{2a}}{1-z}.$$

then seen we see that, using the method of Example (i), we have a counterexample to (11) for $L^p(-\pi,\pi)$ with $1 , where Re <math>\phi > 0$ a.e. Note that if p < 2 (19) and (20) show that the number p/(2-p) given in Theorem V is best possible. If p > 2 (19) assures that we can take $a > \frac{1}{2}$, so that in this case we actually do have a bounded counterexample!

Finally, we consider the space C of continuous functions on the circle (i.e., continuous and periodic with period 2π), and we ask whether $\{\varphi_n\}$ given by (11) is complete in C.

If ϕ is "smooth" enough and satisfies the usual "direction property" we see by the following theorem that we have completeness.

THEOREM VI. Suppose ϕ is a C^2 function on $[-\pi, \pi]$ and $\text{Re } \alpha \phi > 0$ for some α . Then $\{\varphi_n\}$ is complete in C.

To prove this theorem we observe that the Fourier coefficients c_n of ϕ certainly satisfy $\sum_{n=-\infty}^{\infty} |n|^{1/2} |c_n| < \infty$ and then apply a result given in [1]. Since it would require the development of a new topic to even state this result we refer the reader to [1, Corollary III.2].

We conclude our work by producing a counterexample to Theorem VI when we do not assume the added restriction that $\phi \in C^2$.

Example (ii). We construct a function ϕ and a nonzero measure dy such that:

(21)
$$\phi \in C$$
 and $\operatorname{Re} \phi > 0$,

(22)
$$\int_{-\pi}^{\pi} e^{-inx} dy(x) = 0 \quad \text{for } n > 0 \quad \text{and}$$

(23)
$$\int_{-\pi}^{\pi} \phi(x)e^{-inx}dy(x) = 0 \quad \text{for } n \leq 0.$$

(22) is equivalent to

(24)
$$dy(x) = f(e^{ix})^{-}dx$$
 where $f \in H^1$ of the unit disk.

Combining (23) and (24) we get $\phi(x)f(e^{ix})^- = e^{ix}g(e^{ix})$ where $g \in H^1$. Thus, we want to find two functions f and g such that

(25)
$$f$$
 and g are in H^1 of the disk and

(26)
$$\phi(z) = zg(z)/\bar{f}(z)$$
 is continuous and has positive real part

for $z = e^{ix}$, $-\pi \le x \le \pi$. This is done by letting

(27)
$$f(z) = g(z) = i(1-z)^{-1} \log^{-3/2} \left(\frac{N}{1-z}\right)$$

where N is any positive number large enough so that

(28) Re
$$\log^3\left(\frac{N}{1-z}\right) > 0$$
 for $z = e^{iz}$, $-\pi \le x \le \pi$.

It is obvious that f and g satisfy (25), and we have

(29)
$$\phi(z) = \frac{zf}{\bar{f}} = \frac{zf^2}{|f|^2} = \frac{-z(1-z)^{-2}\log^{-3}\left(\frac{N}{1-z}\right)}{\left|1-z\right|^{-2}\left|\log\left(\frac{N}{1-z}\right)\right|^{-3}} = \frac{\log^{-3}\left(\frac{N}{1-z}\right)}{\left|\log\left(\frac{N}{1-z}\right)\right|^{-3}}.$$

Combining (28) and (29) we see that Re $\phi > 0$. Since $|\phi(z)| = 1$ for $z = e^{ix}$ to show ϕ is continuous it is only necessary to show that it has a continuous argument. The only possible trouble could be at x = 0, but it is clear from (28) and (29) that as $x \to 0$ from either direction $\phi(e^{ix}) \to 1$. This shows that ϕ satisfies (26) and completes Example (ii).

REFERENCE

- 1. J. S. Byrnes and D. J. Newman, Uniqueness theorems for convolution-type equations, Trans. Amer. Math Soc. 137 (1969), 383-397.
 - U. S. NAVAL RESEARCH LABORATORY AND YESHIVA UNIVERSITY