A CLASS OF GROUPS WHOSE LOCAL SEQUENCE IS NONSTATIONARY ## KENNETH K. HICKIN¹ Let Σ be a class of groups. Define the local operator L as follows: - (i) $L^0(\Sigma) = \Sigma$. - (ii) If $\alpha > 0$ is an ordinal number, then $L^{\alpha}(\Sigma) =$ the class of all groups having an upper-directed cover of subgroups, each belonging to the class $\bigcup \{L^{\beta}(\Sigma) | \beta < \alpha\}$. We will consider all classes of groups to be isomorphism-closed. $L^1(\Sigma)$ is the local system defined in [1, p. 166]. It is well known that if Σ is closed under the taking of subgroups then $L^2(\Sigma) = L^1(\Sigma)$. In the following, for each ordinal α of cardinality $\leq c$, the continuum, a class of groups will be displayed whose local sequence does not become stationary before α iterations. First define an equivalent operator for sets: Let Γ be a set of sets. Define the operator C as follows: - (i) $C^0(\Gamma) = \Gamma$. - (ii) If $\alpha > 0$ is an ordinal number, then $C^{\alpha}(\Gamma) =$ the set of all sets having an upper-directed cover of subsets, each belonging to the set $\bigcup \{C^{\beta}(\Gamma) | \beta < \alpha\}$. If S is a set, denote its power set by P(S); if Γ is a set of sets, we will sometimes call $U\Gamma$ the "underlying set" of Γ . For any set of sets Γ and ordinal α , we have that $C^{\alpha}(\Gamma) \subset P(U\Gamma)$. Thus all such set-theoretic sequences must eventually become stationary, and we may define $|\Gamma|$ to be the smallest ordinal such that $C^{|\Gamma|+1}(\Gamma) = C^{|\Gamma|}(\Gamma)$. We wish first to solve the set-theoretic problem by displaying, for any ordinal α , a set of sets Γ satisfying $|\Gamma| = \alpha$ (Lemma 1). After the following definitions, a proposition to be used in Lemma 1 will be proved. DEFINITION. Suppose for each $\alpha \in A$, Γ_{α} is a set of sets. Define $\Sigma \{ \Gamma_{\alpha} | \alpha \in A \} = \{ \bigcup f(A) | \text{ where } f \colon A \to \bigcup \{ \Gamma_{\alpha} | \alpha \in A \} \text{ is a function such that } \forall \alpha \in A, f(\alpha) \in \Gamma_{\alpha} \}$. That is, an element of $\Sigma \{ \Gamma_{\alpha} | \alpha \in A \}$ is a union of sets, one chosen from each Γ_{α} . DEFINITION. Suppose Γ is a set of sets and $S \in C^{\alpha}(\Gamma)$ for some ordinal α . Thus S possesses an upper-directed cover $\{X_{\mu} | \mu \in M\}$ of sub- Received by the editors April 24, 1968. ¹ The research for this paper was sponsored by National Science Foundation Grant number GY-2880. sets such that each $X_{\mu} \in C^{\beta}(\Gamma)$ for some $\beta < \alpha$. We will say that the cover $\{X_{\mu} | \mu \in M\}$ is "augmented" if $\exists \mu \in M$ such that $X_{\mu} \in \Gamma$. It is easy to see that any $S \in C^{\alpha}(\Gamma)$, for any α , possesses an augmented cover. PROPOSITION. Suppose for each $\alpha \in A$, Γ_{α} is a set of sets such that the collection $\{ \bigcup \Gamma_{\alpha} | \alpha \in A \}$ of underlying sets is pairwise disjoint. Let $\Gamma = \Sigma \{ \Gamma_{\alpha} | \alpha \in A \}$. Then (i) for any ordinal β , $C^{\beta}(\Gamma) = \Sigma \{ C^{\beta}(\Gamma_{\alpha}) | \alpha \in A \}$, and (ii) $|\Gamma| = \sup \{ |\Gamma_{\alpha}| | \alpha \in A \}$. PROOF. PROOF of (i). If $\beta = 0$, the assertion is immediate. Suppose $\beta > 0$ and $\forall \rho < \beta$, $C^{\rho}(\Gamma) = \sum \{ C^{\rho}(\Gamma_{\alpha}) \mid \alpha \in A \}$. Assume $B \in \Sigma \{ C^{\beta}(\Gamma_{\alpha}) | \alpha \in A \}$, so that $B = \bigcup f(A)$, where $f: A \to \bigcup \{ C^{\beta}(\Gamma_{\alpha}) | \alpha \in A \}$ is a function such that $\forall \alpha \in A$, $f(\alpha) \in C^{\beta}(\Gamma_{\alpha})$. Thus each $f(\alpha) = B_{\alpha}$ has an upper-directed, augmented cover $\{ X_{\alpha}^{\nu} | \psi \in I_{\alpha} \}$ of subsets X_{α}^{ν} , where each X_{α}^{ν} is a member of $C^{\rho}(\Gamma_{\alpha})$ for some $\rho < \beta$. Since the covers are augmented, for each α let $X_{\alpha}^{\nu} \in \Gamma_{\alpha}$. Let $Y_{0} = \bigcup \{ X_{\alpha}^{\nu} | \alpha \in A \}$; thus $Y_{0} \in \Gamma = \Sigma \{ \Gamma_{\alpha} | \alpha \in A \}$. For each $\rho < \beta$ define $\Lambda_{\rho} \subset \Sigma \{ C^{\rho}(\Gamma_{\alpha}) | \alpha \in A \} = C^{\rho}(\Gamma)$ as follows: $$Y \in \Lambda_{\rho} \Leftrightarrow Y$$ $$= \bigcup \big\{ X_{\alpha}^{\psi(\alpha)} \mid \alpha \in A, \text{ where } X_{\alpha}^{\psi(\alpha)} \in C^{\rho}(\Gamma_{\alpha}) \big\}$$ and for all but a finite number of α , $X_{\alpha}^{\psi(\alpha)} = X_{\alpha}^{\psi_0}$. Thus if we put $\Lambda = \bigcup \{ \Lambda_{\rho} | \rho < \beta \} \subset \bigcup \{ C^{\rho}(\Gamma) | \rho < \beta \}$, in order to show $B \in C^{\beta}(\Gamma)$, it suffices to show that Λ is an upper-directed cover for B. To show that Λ covers B, select any $b \in B$. Then $\exists \alpha'$, ψ' such that To show that Λ covers B, select any $b \in B$. Then $\exists \alpha', \psi'$ such that $b \in X_{\alpha'}^{\psi'}$, since $\{X_{\alpha}^{\psi} | \alpha \in A, \psi \in I_{\alpha}\}$ covers B. Also $\exists \rho < \beta$ such that $X_{\alpha'}^{\psi'} \in C^{\rho}(\Gamma_{\alpha'})$. Thus if we let $Y = \bigcup \{X_{\alpha}^{\psi} \mid \alpha \in A, \text{ where } X_{\alpha}^{\psi} = X_{\alpha'}^{\psi'} \text{ when } \alpha = \alpha', \text{ but } X_{\alpha}^{\psi} = X_{\alpha}^{\psi} \text{ when } \alpha \neq \alpha' \},$ then $Y \in \Lambda_{\rho} \subset \Lambda$ and $b \in Y$. Thus Λ covers B. To show that Λ is upper-directed, let $Y_1, Y_2 \in \Lambda$. Say $Y_1 = \bigcup \left\{ X_{\alpha}^{\phi_{\alpha}} \middle| \alpha \in A \right\}$ and $Y_2 = \bigcup \left\{ X_{\alpha}^{\theta_{\alpha}} \middle| \alpha \in A \right\}$. Let $\alpha_1, \dots, \alpha_n$ be elements of A such that $\forall \alpha \in A$, $\alpha \in \left\{ \alpha_1, \dots, \alpha_n \right\} \Rightarrow X_{\alpha}^{\theta_{\alpha}} = X_{\alpha}^{\phi_0}$ and $X_{\alpha}^{\phi_{\alpha}} = X_{\alpha}^{\phi_0}$. Such a set $\left\{ \alpha_1, \dots, \alpha_n \right\}$ exists by the finiteness condition in the definition of Λ_{ρ} . Since $\forall \alpha \in A$, $\left\{ X_{\alpha}^{\psi} \middle| \psi \in I_{\alpha} \right\}$ is an upper-directed cover of B_{α} , we have that for each α_i , $1 \leq i \leq n$, $\exists \psi_i \in I_{\alpha_i}$ such that $X_{\alpha_i}^{\theta_{\alpha_i}} \subset X_{\alpha_i}^{\psi_i}$ and $X_{\alpha_i}^{\phi_{\alpha_i}} \subset X_{\alpha_i}^{\psi_i}$. Also $\exists \rho_i < \beta$ such that $X_{\alpha_i}^{\psi_i} \in C^{\rho_i}(\Gamma)_{\alpha_i}$. Letting $\rho' = \max \left\{ \rho_i \middle| 1 \leq i \leq n \right\} < \beta$, we have $Y = \bigcup \left\{ X_{\alpha_i}^{\psi_i} \middle| 1 \leq i \leq n \right\} \cup (\bigcup \left\{ X_{\alpha}^{\psi_0} \middle| \alpha \in \left\{ \alpha_1, \dots, \alpha_n \right\}, \alpha \in A \right\}) \in \Lambda_{\rho'} \subset \Lambda$, and $Y_1 \subset Y$, $Y_2 \subset Y$. Thus Λ is upper-directed. It follows that $B \in C^{\beta}(\Gamma)$, and hence $\Sigma \{ C^{\beta}(\Gamma_{\alpha}) | \alpha \in A \} \subset C^{\beta}(\Gamma)$. Now assume $B \in C^{\beta}(\Gamma)$. Then B possesses an upper-directed cover $\{Y_{\mu} | \mu \in M\}$ where each Y_{μ} is an element of $C^{\rho\mu}(\Gamma)$ for some $\rho_{\mu} < \beta$. Thus $Y_{\mu} \in \Sigma \{C^{\rho\mu}(\Gamma_{\alpha}) | \alpha \in A\}$, and we may write $$Y_{\mu} = \bigcup \{X_{\alpha}^{\mu} \mid \alpha \in A, \text{ where } X_{\alpha}^{\mu} \in C^{\rho_{\mu}}(\Gamma_{\alpha}) \}.$$ By the disjointness property of the sets underlying the Γ_{α} , we have that $B_{\alpha} = B \cap (U\Gamma_{\alpha}) = U\{X_{\mu}^{\alpha} | \mu \in M\}$ and, since $\{Y_{\mu} | \mu \in M\}$ is upperdirected, $\{X_{\alpha}^{\mu} | \mu \in M\}$ is also. Thus $\forall \alpha \in A$, $B_{\alpha} \in C^{\beta}(\Gamma_{\alpha})$ and $B = U\{B_{\alpha} | \alpha \in A\}$. It follows that $B \in \Sigma\{C^{\beta}(\Gamma_{\alpha}) | \alpha \in A\}$, and hence $C^{\beta}(\Gamma) \subset \Sigma\{C^{\beta}(\Gamma_{\alpha}) | \alpha \in A\}$. The proof of (i) is now complete. Proof of (ii). This follows immediately from (i) and the disjointness of the sets underlying the Γ_{α} . For if $\beta < |\Gamma_{\alpha}|$ for some α , then $C^{\beta+1}(\Gamma_{\alpha}) > C^{\beta}(\Gamma_{\alpha}) \Longrightarrow C^{\beta+1}(\Gamma) = \Sigma \left\{ C^{\beta+1}(\Gamma_{\alpha}) \middle| \alpha \in A \right\} > \Sigma \left\{ C^{\beta}(\Gamma_{\alpha}) \middle| \alpha \in A \right\} = C^{\beta}(\Gamma)$, which shows $|\Gamma| \ge \sup \left\{ |\Gamma_{\alpha}| \middle| \alpha \in A \right\} = \sigma$. On the other hand, $C^{\sigma+1}(\Gamma) = \Sigma \left\{ C^{\sigma+1}(\Gamma_{\alpha}) \middle| \alpha \in A \right\} = \Sigma \left\{ C^{\sigma}(\Gamma_{\alpha}) \middle| \alpha \in A \right\} = C^{\sigma}(\Gamma)$, which shows $|\Gamma| \le \sigma$. LEMMA 1. For all ordinals α there exists a set of sets Γ_{α} satisfying $|\Gamma_{\alpha}| = \alpha$. If α is infinite, of cardinality $\bar{\alpha}$, then Γ_{α} can be chosen so that $U\Gamma_{\alpha}$ has cardinality $\bar{\alpha}$. PROOF. We induct on the theorem and on the additional property $U\Gamma_{\alpha} \in C^{\alpha}(\Gamma_{\alpha})$, but $\forall \beta < \alpha$, $U\Gamma_{\alpha} \notin C^{\beta}(\Gamma_{\alpha})$. The theorem follows when $\alpha = 0$ trivially and when $\alpha = 1$, letting $$\Gamma_1 = \{\{1, 2, \dots, n\} \mid n \in \mathbb{N}, \text{ the natural numbers}\},$$ we have that $N \notin \Gamma_1$, but $N \in C^1(\Gamma_1) = C^2(\Gamma_1)$. Assume the theorem and the additional property hold for all ordinals less than α , $\alpha > 1$. Case 1. α is a limit ordinal. For each $\beta < \alpha$ choose Γ_{β} satisfying the inductive hypotheses such that the collection $\{ \mathsf{U}\Gamma_{\beta} \big| \beta < \alpha \}$ of underlying sets is pairwise disjoint. Define $\Gamma_{\alpha} = \Sigma \big\{ \Gamma_{\beta} \big| \beta < \alpha \big\}$. By (ii) of the proposition we have immediately that $|\Gamma_{\alpha}| = \alpha$. Now $\mathsf{U}\Gamma_{\alpha} = \mathsf{U} \big\{ \mathsf{U}\Gamma_{\beta} \big| \beta < \alpha \big\}$, and each $\mathsf{U}\Gamma_{\beta} \in C^{\beta}(\Gamma_{\beta})$, implying by (i) of the proposition $\mathsf{U}\Gamma_{\alpha} \in \Sigma \big\{ C^{\alpha}(\Gamma_{\beta}) \big| \beta < \alpha \big\} = C^{\alpha}(\Gamma_{\alpha})$. On the other hand, if $\mu < \alpha$, then $\mathsf{U}\Gamma_{\mu+1} \notin C^{\mu}(\Gamma_{\mu+1})$, and hence $\mathsf{U}\Gamma_{\alpha} \notin \Sigma \big\{ C^{\mu}(\Gamma_{\beta}) \big| \beta < \alpha \big\} = C^{\mu}(\Gamma)$. Thus Γ_{α} satisfies all inductive hypotheses. Case 2. $\alpha = \gamma + 1$. Let Λ be a set of sets satisfying $|\Lambda| = \gamma$ and the other inductive hypotheses. Let $\{\Lambda_i | i = 1, 2, \cdots \}$ be copies of Λ obtained by indexing the elements of $U\Lambda$ with the i's so that the collection $\{U\Lambda_i | i = 1, 2, \cdots \}$ of underlying sets is pairwise disjoint. Define $$\Gamma_{\alpha} = \{X \mid X = L_1 \cup L_2 \cup \cdots \cup L_{N-1} \cup (\bigcup \Lambda_N), \text{ where } L_i \subset \Lambda_i, N \geq 1\}.$$ Suppose for all μ such that $\mu < \beta \leq \gamma$, any $X \in C^{\mu}(\Gamma)$ is of the form $S_1 \cup \cdots \cup S_{N-1} \cup (\bigcup \Lambda_N)$ where $\forall i = 1, \cdots, N-1, S_i \in C^{\mu}(\Lambda_i)$. Call N the length of X. (This is clearly so if $\beta = 1$.) Let $\Delta = \bigcup \{ C^{\mu}(\Gamma_{\alpha}) | \mu < \beta \}$. Suppose some member X of $C^{\beta}(\Gamma_{\alpha})$ is realized by the upper-directed cover $\{X_{\rho} | \rho \in R\}$ where $\forall \rho \in R, X_{\rho} \in \Delta$. Further, let $\rho_1, \rho_2 \in R$ be such that $X_{\rho_1} \subset X_{\rho_2}$. Say $X_{\rho_1} = S_1 \cup \cdots \cup S_{N-1} \cup (\bigcup \Lambda_N)$, $S_i \in C^{\mu_i}(\Lambda_i)$, $\mu_1 < \beta$, and $X_{\rho_2} = T_1 \cup \cdots \cup T_{M-1} \cup (\bigcup \Lambda_M)$, $T_i \in C^{\mu_2}(\Lambda_i)$, $\mu_2 < \beta$. If $N \neq M$, it must be the case that either $S_i = \bigcup \Lambda_i$ for some i, or $T_i = \bigcup \Lambda_i$ for some i, which is impossible by the inductive hypotheses on $U\Lambda$. Thus N = M. Hence all members of the cover $\{X_{\rho} | \rho \in R\}$ must have the same length N, and we may write $X_{\rho} = S_1^{\rho} \cup \cdots \cup S_{N-1}^{\rho} \cup (\bigcup \Lambda_N)$, where $S_i^{\rho} \in C^{\mu}(\Lambda_i)$ for some $\mu < \beta$. The disjointness of the underlying sets of the Λ_i now yields that, for $1 \le i \le N-1$, $\{S_i^{\rho} \mid \rho \in R\}$ is an upperdirected cover for $X \cap (U\Lambda_i)$. Thus X, an arbitrary element of $C^{\beta}(\Lambda_{\alpha})$, is of the form $T_1 \cup \cdots \cup T_{N-1} \cup (\bigcup \Lambda_N)$, where $T_i \in C^{\beta}(\Lambda_i)$, $1 \leq i$ $\leq N-1$. In particular, the above argument shows that the members of $C^{\gamma}(\Gamma_{\alpha})$ are of the form (*) $$S_1 \cup \cdots \cup S_{N-1} \cup (\bigcup \Lambda_N), \quad S_i \in C^{\gamma}(\Lambda_i), \quad 1 \leq i \leq N-1.$$ Since $|\Lambda| = \gamma$ and $U\Lambda \subset C^{\gamma}(\Lambda)$, it follows that for each $N \geq 1$, $(U\Lambda_1) \cup \cdots \cup (U\Lambda_N) \subset C^{\gamma}(\Gamma_{\alpha})$. Hence $U\Gamma_{\alpha} = U\{U\Lambda_i | i = 1, 2, \cdots\}$ has an upper-directed cover of subsets in $C^{\gamma}(\Gamma_{\alpha})$. But $U\Gamma_{\alpha} \in C^{\gamma}(\Gamma_{\alpha})$ since $U\Gamma_{\alpha}$ is not of the form (*). It remains to show that $C^{\gamma+1}(\Gamma_{\alpha}) = C^{\gamma+2}(\Gamma_{\alpha})$. We will omit the details; however, from the form (*), the following characterization of the members of $C^{\gamma+1}(\Gamma_{\alpha})$ is easily obtained: $X \in C^{\gamma+1}(\Gamma_{\alpha}) \Leftrightarrow X = S_1 \cup \cdots \cup S_N \cup \cdots$ where either (1) each $S_i \in C^{\gamma}(\Lambda_i)$ and $S_i = \bigcup \Lambda_i$ cofinally in S_1, \cdots, S_N, \cdots or (2) $X \in C^{\gamma}(\Gamma_{\alpha})$ (and hence the S_i are empty after a point). From this it is easy to see that any directed system of sets in $C^{\gamma+1}(\Gamma_{\alpha})$ again yields a member of $C^{\gamma+1}(\Gamma_{\alpha})$. Thus Γ_{α} satisfies the inductive hypotheses. The example given for $|\Gamma_1|=1$ at the outset was such that $U\Gamma_1$ had cardinality d of the natural numbers. If α is a nonlimit ordinal, $\alpha=\gamma+1$, and $U\Gamma_{\gamma}$ is of infinite cardinality σ , then Γ_{α} , as constructed, has cardinality $d\sigma=\sigma$. Thus, as constructed, $U\Gamma_{\omega}$ has cardinality $d=\bar{\omega}$, since at limit ordinals α , $U\Gamma_{\alpha}$ will have cardinality $\sum_{\beta<\alpha}\sigma_{\beta}$ where σ_{β} is the cardinality of $U\Gamma_{\beta}$. It is thus clear that for all infinite ordinals α , $U\Gamma_{\alpha}$ will have cardinality $\bar{\alpha}$, and the proof is complete. LEMMA 2. If A is a countably infinite set then there exists an uncountable set of subsets of A such that no containments hold between distinct members. PROOF. Let $\{A_i | i=1, 2, \cdots \}$ be a partition of A such that each A_i is countably infinite. Define $K \subset P(A)$ by $K = \{B \subset A \mid B \text{ contains exactly one element from each } A_i\}$. The cardinality of K is $d^d = 2^d$, and if B_1 , $B_2 \subset K$, clearly $B_1 \subset B_2$, unless $B_1 = B_2$. COROLLARY. There exists a set of cardinality c of torsion abelian groups, $T = \{T_{\alpha} | \alpha \in K\}$ such that $\forall \alpha_1, \alpha_2 \in K$, $\alpha_1 \neq \alpha_2 \Rightarrow T_{\alpha_1} \not\subset T_{\alpha_2}$. PROOF. Let A be a countably infinite set of primes. Applying Lemma 2, $\exists K \subset P(A)$ such that K is uncountable and for any B_1 , $B_2 \in K$, $B_1 \neq B_2 \Rightarrow B_1$ contains some prime not in B_2 . For $B \in K$, define $T_B = \sum_{p \in B} J_p$ (the direct sum), where J_p is a cyclic group of order p. We claim that the set of groups $\{T_B \mid B \in K\}$ is the desired set. For suppose B_1 , $B_2 \in K$ and $B_1 \neq B_2$. Then if p is a prime in $B_1 \setminus B_2$, we have that T_{B_1} has an element of order p, whereas T_{B_2} does not. Hence $T_{B_1} \subset T_{B_2}$. We will also need several properties of free products of groups. LEMMA 3. Let $\{G_{\delta} | \delta \in \Delta\}$ and $\{H_{\lambda} | \lambda \in \Lambda\}$ be arbitrary collections of groups, and put $R = (\prod_{\delta \in \Delta}^* G_{\delta}) * (\prod_{\lambda \in \Lambda}^* H_{\lambda})$. Then $(\prod_{\delta \in \Delta}^* G_{\delta}) \cap \langle H_{\lambda}^R | \gamma \in \Lambda \rangle$ is trivial. LEMMA 4. If $\{G_{\delta} | \delta \in \Delta\}$ is a collection of groups, and H is a freely indecomposable group, but not infinite cyclic, satisfying $H \subset G$ = $\prod_{\delta \in \Delta}^* G_{\delta}$, then $\exists \delta \in \Delta$ such that H is a subgroup of a conjugate of G_{δ} in G. PROOF. Suppose $H \subset G = \prod_{\delta \in \Delta}^* G$ where H is freely indecomposable but not infinite cyclic. By the subgroup theorem for free products [1, p. 17], $H = F * \prod_{v \in V}^* H_v$ where F is a free group and $\forall v \in V$, H_v is conjugate in G to a subgroup of G_δ for some $\delta \in \Delta$. By another theorem [1, p. 26], any two free decompositions of a group possess isomorphic refinements. Hence, since H is freely indecomposable, $F * \prod_{v \in V}^* H_v$ must have exactly one nontrivial factor. H cannot be isomorphic to F since the only freely indecomposable free group is infinite cyclic (or trivial). Thus $H = H_v$ for some $v \in V$. The lemma follows. We can now prove the desired theorem. THEOREM. For any ordinal α of cardinality $\leq c$, there exists a class of groups B_{α} such that $L^{\alpha}(B_{\alpha}) = L^{\alpha+1}(B_{\alpha})$, but $L^{\beta}(B_{\alpha}) < L^{\beta+1}(B_{\alpha})$ when $\beta < \alpha$. PROOF. Let $T = \{ T_{\alpha} | \alpha \in K \}$ be the class of torsion abelian groups of the corollary to Lemma 2. By virtue of Lemma 1, $\exists P \subset P(K)$ such that $|P| = \alpha$. If $Y \subset K$, define $F_Y = \prod_{\gamma \in Y}^* T_{\gamma}$ and put $F = \{ F_Y | Y \subset K \}$. Define the class $B_{\alpha} = \{ F_Y | Y \in P \}$. Suppose $\{F_l | l \in \Lambda\}$ is an upper-directed cover of subgroups in F for some $G \in F$, $G = F_Y$. We assert that the set of sets $\{l | l \in \Lambda\}$ is an upper-directed cover of subsets for Y, since - (1) If $F_{l_1} \subset F_{l_2}$, then each free factor of F_{l_2} , by Lemma 4, is isomorphically contained in some free factor of F_{l_2} , and so by the property of the $\{T_{\alpha} | \alpha \in K\}$ these free factors are isomorphic. This shows $l_1 \subset l_2$. Hence $\{l | l \in \Lambda\}$ is upper-directed provided $\{F_l | l \in \Lambda\}$ is also. - (2) Consider, by Lemma 4, all of the conjugate subgroups of free factors of G to which the free factors of the $\{F_l | l \in \Lambda\}$ belong. If no conjugate of some free factors of G occurs, then Lemma 3 is violated since $\{F_l | l \in \Lambda\}$ covers G. Hence all free factors of G are represented, and so $\{l | l \in \Lambda\}$ covers Y. Thus any such group-theoretic covering yields a set-theoretic covering according to the correspondence $T_x \rightarrow x$. Likewise any set-theoretic covering yields a group-theoretic covering. Considering the local sequence B_{α} , $L(B_{\alpha})$, \cdots $L^{\beta}(B_{\alpha})$, \cdots the theorem will be proved if we can eliminate the possibility that, at some stage in the sequence of local covers leading to any $G \in L^{\beta}(B_{\alpha})$ $\cap F$, some group $H \notin F$ occurs. Since the sequence of local covers leading to G is well-ordered, such an H must occur for a first time at some stage. Hence, WLOG, we may assume that H possesses an upper-directed cover $\{F_{\gamma} | \gamma \in \Gamma\}$ of subgroups in F. Since $H \subset G \subset F$, by the subgroup theorem for free products we have $H \approx Q * \prod_{\rho \in R}^* \tau_{\rho}$ where Q is a free group and each τ_{ρ} is isomorphic to a subgroup of some member of T. Each free factor T_{γ_i} of each F_{γ_i} $\gamma \in \Gamma$, by Lemma 4, is isomorphically contained in some τ_{ρ_i} and hence, for each such τ_{ρ_i} , $\tau_{\rho} \approx T_{\alpha_{\rho_i}}$. Since $\{F_{\gamma} | \gamma \in \Gamma\}$ covers H, by Lemma 3, all of the τ_{ρ_i} , $\rho \in R$, are obtained in this way, and consequently $H \approx \prod_{\rho \in R}^* T_{\alpha_{\rho_i}}$. In order to show $H \in F$, which will establish the theorem, we must show that no two $T_{\alpha_{\rho_i}}$, $T_{\alpha_{\rho_i}}$ with ρ_i , $\rho_i \in R$, $\rho_i \neq \rho_i$, are isomorphic. Suppose $T_{\alpha_{\rho_i}} \approx T_{\alpha_{\rho_i}}$. Then by Lemmas 3 and 4 and the covering property of $\{F_{\gamma} | \gamma \in \Gamma\}$, $\exists F_{\gamma_i}$, F_{γ_i} , F_{γ_i} , satisfying: - (1) Some free factor of F_{γ_1} is conjugate to $T_{\alpha\rho_1}$ in $\prod_{\rho\in\mathbb{R}}^* T_{\alpha\rho}$. - (2) Some free factor of F_{γ_2} is conjugate to $T_{\alpha\rho_2}$ in $\prod_{\rho\in\mathbb{R}}^{\gamma_2} T_{\alpha\rho}$. - (3) $F_{\gamma_1} \subset F_{\gamma_2}$ and $F_{\gamma_2} \subset F_{\gamma_2}$. This implies that $T_{\alpha\rho_1}$ and $T_{\alpha\rho_2}$ are conjugate in $\prod_{\rho\in R}^* T_{\alpha\rho}$, a contradiction since $T_{\alpha\rho_1}$ and $T_{\alpha\rho_2}$ are distinct free factors of $\prod_{\rho\in R}^* T_{\alpha\rho}$. This completes the proof. It will be observed that the only group-theoretic property of the "incomparable" set, $\{T_{\alpha} | \alpha \in A\}$, of torsion abelian groups used in the proof was the each T_{α} was freely indecomposable and not isomorphic to any proper subgroup of itself. Since the set-theoretic lemma was proved for arbitrary ordinals, a stronger result about local sequences of groups will follow whenever a larger "incomparable" set of such freely indecomposable groups can be displayed. The author has not been able to find such a set of cardinality greater than c. I would like to thank Dr. L. Sonneborn who offered several simplifications of my original proof and Mr. W. Stromquist whose ideas are used in several places. ## **BIBLIOGRAPHY** 1. A. G. Kuroš, *The theory of groups*, Vol. II, GITTL, Moscow, 1953; English transl., Chelsea, New York, 1956. University of Kansas