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Let S be a class of groups. Define the local operator P as follows:

(i) ¿«(S) =2.
(ii) If a >0 is an ordinal number, then P°(2)=the class of all

groups having an upper-directed cover of subgroups, each belonging

to the class U{P«(2)|j8<a}.
We will consider all classes of groups to be isomorphism-closed.

P*(2) is the local system defined in [l, p. 166]. It is well known that

if 2 is closed under the taking of subgroups then P2(2) =P1(2).

In the following, for each ordinal a of cardinality ^c, the con-

tinuum, a class of groups will be displayed whose local sequence does

not become stationary before a iterations.

First define an equivalent operator for sets: Let T be a set of sets.

Define the operator C as follows:

(0 c°(r)=r.
(ii) If a>0 is an ordinal number, then C"(r) =the set of all sets

having an upper-directed cover of subsets, each belonging to the set

\J{C<>(T)\ß<a}.
If S is a set, denote its power set by P(S); if T is a set of sets, we

will sometimes call Ur the "underlying set" of T.

For any set of sets T and ordinal a, we have that Ca(r)CP(Ur).

Thus all such set-theoretic sequences must eventually become sta-

tionary, and we may define |r| to be the smallest ordinal such that
Ciri+i(r) = Cir'(D.

We wish first to solve the set-theoretic problem by displaying, for

any ordinal a, a set of sets T satisfying | r| =a (Lemma 1). After the

following definitions, a proposition to be used in Lemma 1 will be

proved.

Definition. Suppose for each aQA, Ta is a set of sets. Define

l{Ya\aQA} = {Uf(A)\ where/: A-*[J\Ta\aQA} is a function such

that VaQA, /(a)Gra}. That is, an element of 2{ra|o:G^} is a

union of sets, one chosen from each Ta.

Definition. Suppose T is a set of sets and 5GGa(r) for some ordi-

nal a. Thus 5 possesses an upper-directed cover {X^\pQM} oí sub-
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sets such that each A^EC^r) for some ß<a. We will say that the

cover {X^\nEM} is "augmented" if 3p.EM such that A^EI1.

It is easy to see that any SECa(Y), for any a, possesses an aug-

mented cover.

Proposition. Suppose for each aEA, Ta is a set of sets such that the

collection {{JYa\aEA} of underlying sets is pairwise disjoint. Let

r =2 {r„| aEA }. Then (i)for any ordinalß, C'ÇT) =2 {d>ÇCa) | aEA },

a«d(ii) |r| =sup{|ra| \aEA}.

Proof. Proof of (i). If ß = 0, the assertion is immediate. Suppose

/3>0and Vp<ß, C"(T) =2 j C"(Ya)\aEA }.
Assume BE2{CHYa)\aEA}, so that B = [)f(A), where /:

A-*\J{C^(Ya)\aEA} is a function such that VaEA, f(a)ECb(Ya).

Thus each f(a)=Ba has an upper-directed, augmented cover

(A«|\Í'E7„Í of subsets A*, where each X* is a member of C'(r„) for

some p<ß. Since the covers are augmented, for each a let A¿°Era.

Let Yo = U{XÍ°\aEA}; thus F„Er=2 {Ta\aEA }. For each p<ß
define APE2 { C'(ra) | aEA } = C"(r) as follows:

Y E K <=► Y

= U{A*(a' | a E A, where A«W E C>(Ta)

and for all but a finite number of a, Xa     = Au°}.

Thus if we put A=U {A„|p</3} CU { C(T)\p<ß}, in order to show
7^EC"(r), it suffices to show that A is an upper-directed cover for B.

To show that A covers B, select any bEB. Then 3a', \p' such that

bEXi; since {A*|aE^, <AE7a} covers B. Also 3p</3 such that

X^EC"(Ya,). Thus if we let

F = UjAa \aEA, where Aa = A„- when a = a , but A« = Aa whena^a'j,

then FEA„CA and bE Y. Thus A covers B.

To show that A is upper-directed, let Yi, F2EA. Say Yi

= U{aM«E^4} and F2 = U ¡ A>|«E¿ J. Let ah • • • , an be ele-
ments of A such that VaEA, «E [oti, • • • , a„} =»A'« = A*° and

A*" = A¿°. Such a set {au • • • ,o„) exists by the finiteness condition

in the definition of Ap. Since VaEA, {A£|^E7a} is an upper-directed

cover of Btt, we have that for each a¡, l_7^w, 3\p¡EIai such that

AREAS' and A*°iCA£. Also 3Pi</3 such that A*;EC«(Da.. Let-
ting p' = max{p,-|l=;g«} <ß, we have F=U \Alii 1 di^n]
U(U{A*»|aEi«!, • • • , an}, aEA})EK>CK and FiC Y, F2C Y.
Thus A is upper-directed.

It follows that BEC^T), and hence 2{C*(Ta)\aEA } CC'ff).
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Now assume BQCß(T). Then P possesses an upper-directed cover

{ Y^pQM] where each F„ is an element of C^ÇY) for some p„</3.

Thus F„G2{C"'(ra)|a:G;l}, and we may write

F„ = U{X"| a G A, where X*a Q C»(Ta)}.

By the disjointness property of the sets underlying the r„, we have

thatP„ = Pn(Ura)=U{X"!ííGM} and, since { Y„\pQM} is upper-

directed, {X"a\pQM} is also. Thus VaQA, BaQCß(Ya) and B

= [){Ba\aQA}. It follows that PG2{Ca(ra)|aG¿}, and hence

cß(Y)Qi{c(Ya)\aQA}.
The proof of (i) is now complete.

Proof of (ii). This follows immediately from (i) and the disjoint-

ness of the sets underlying the Ya. For if /3<|r„|  for some a, then

c+1(ra) > C(ra)=> cß+i(Y) =2 {cß+l(Ya) I olqa } >i {c(Ta) \aQA}
= Cß(Y), which shows | T| =t sup} | r„| \aQA} =a. On the other

hand,C°+HY)=l{C'+1(Ta)\aQA} =l{C°(Ta)\aQA} =C°(T),which
shows |r| ga.

Lemma 1. For all ordinals a there exists a set of sets Ta satisfying

| ra| =a. If ais infinite, of cardinality ä, then Ya can be chosen so that

Ura has cardinality a.

Proof. We induct on the theorem and on the additional property

UraGCa(rK), but Vß<a, (JYaQCß(Ya). The theorem follows when

a = 0 trivially and when a = l, letting

Ti = {{l, 2, ••-,«} | « G N, the natural numbers},

we have that NQYU but NQO(Y¿ = C2(r,).
Assume the theorem and the additional property hold for all ordi-

nals less than a, a>l.

Case 1. a is a limit ordinal. For each ß<a choose Yß satisfying the

inductive hypotheses such that the collection {Ur^|/3<a} of under-

lying sets is pairwise disjoint. Define Ya=l{Yß\ß<a}. By (ii) of the

proposition we have immediately that [r„| =a. Now Ura

= U {Urg| ß<a}, and each UYßQCß(Yß), implying by (i) of the propo-
sition ÖYaQl{Ca(Yß)\ß<a} =Ca(Ya). On the other hand, if p<a,

then Ur„+1GC"(r„+1), and hence \JYaQ S{ C(Yß)\ß<a} = C»(Y).
Thus r„ satisfies all inductive hypotheses.

Case 2. a=7+1. Let A be a set of sets satisfying | A| =7 and the

other inductive hypotheses. Let j A*] * = 1, 2, • • • } be copies of A

obtained by indexing the elements of UA with the i's so that the col-

lection {UA,|4 = 1, 2, • • • } of underlying sets is pairwise disjoint.

Define

ra= {X\ X = L¿JLi\J ■ ■ ■ KJLN-iVJCJAN),whereLiQAi,N^ l}.
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Suppose for all p. such that ß<ß£y, any AEC"(r) is of the form

SiU • • • ¡JS/r-iV(UAfi) where V* = l, • • • , A-l, 5,EC"(A<). Call
N the length of A. (Thisis clearly so if ß = 1.) Let A = U { C"(r„) \p.<ß}.

Suppose some member A of Cß(Ta) is realized by the upper-directed

cover {A„| pER} where VpER, A„EA. Further, let pi, p2ER be such

that XnEXn. Say XM = SAJ ■ ■ ■ \JSN-i\J(\JAN), SiEC'ifA,),
di<ß, and A„=rAJ • • • VTM-iV([)AM), 7\EC*(A,), m<ß. If
Nt¿M, it must be the case that either 5< = UA¿ for some i, or 7\ = UA,-

for some i, which is impossible by the inductive hypotheses on UA.

Thus N = M. Hence all members of the cover {A^pET^} must have

the same length N, and we may write Ap = 5îW • • • WSfr^W^A.v),
where 5{"EC"(Ai) for some ß<ß. The disjointness of the underlying

sets of the A ¿now yields that, for 1 £i g N— 1, {•SJ'IpET^} is an upper-

directed cover for APi(UA,). Thus A, an arbitrary element of Cß(Aa),

is of the form 7\U • • • KJ7>_i\J(UA*), where r.EC^A,), l^i

= A-1.
In particular, the above argument shows that the members of

CT(r«) are of the form

(*)       S«. U • • • U Sv-i U (UA*),       S{ E Cy(Aj),    l£i£N-l.

Since |A| =7 and UAEC*(A), it follows that for each A^l, (UAi)

U ■ • •^J(\JAff)ECHTa). Hence Ur« = U{UAi|* = l, 2, ■ ■ • } has an
upper-directed cover of subsets in Cy(ra). But ÖTaECy(Ta) since

Ur„ is not of the form (*).

It remains to show that C+l(Ta) = C+2(Ta). We will omit the

details; however, from the form (*), the following characterization of

the members of Cy+l(Ta) is easily obtained: IGC7+1(r«)«^

=SAJ • • • \JSNVJ ■ ■ ■ where either (1) each S<ECT(A<) and 5,-
= UA¿ cofinally in 5i, • • ■ , Su, • • • or (2) AEC^r,,) (and hence
the St are empty after a point).

From this it is easy to see that any directed system of sets in

Ci+1(Ta) again yields a member of C?+1(ra).

Thus Ta satisfies the inductive hypotheses.

The example given for J Tij =1 at the outset was such that UFi

had cardinality d of the natural numbers. If a is a nonlimit ordinal,

a=7 + l, and UrT is of infinite cardinality <r, then Ta, as constructed,

has cardinality da = <r. Thus, as constructed, Ur„ has cardinality

d = w, since at limit ordinals a, Ura will have cardinality 2/3<<* ffß

where as is the cardinality of \JYS.

It is thus clear that for all infinite ordinals a, Ur„ will have cardi-

nality a, and the proof is complete.
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Lemma 2. If A is a countably infinite set then there exists an uncount-

able set of subsets of A such that no containments hold between distinct

members.

Proof. Let {^4<|t' = l, 2, • • • } be a partition of A such that each

Ai is countably infinite. Define KQP(A) by K= {PC^|P contains

exactly one element from each Ai}. The cardinality of K is dd = 2d,

and if Pi, BiQK, clearly Bi(\_Bi, unless Pi = Ps.

Corollary. There exists a set of cardinality c of torsion abelian

groups, T— {Pa|a:GP} such that Vcci, a2QK, ai9*ai=^Tai<X.Tai.

Proof. Let A be a countably infinite set of primes. Applying

Lemma 2, 3KQP(A) such that K is uncountable and for any B\,

BiQK, Bi9*Bi=^Bi contains some prime not in P2. For BGP, define

Pjs= ^pteJp (the direct sum), where Jp is a cyclic group of order

p. We claim that the set of groups { TB\ BQK} is the desired set. For

suppose Pi, BiQK and Bi9*B2. Then if p is a prime in Bi\B2, we have

that TBl has an element of order p, whereas TB% does not. Hence

Tb^Tbv

We will also need several properties of free products of groups.

Lemma 3. Let {d,\ 5GA} and {H\\\Qk} be arbitrary collections of

groups, and put P = (üsea Gí)*(II*eAH^- Then (II*eA Gj)
r\(H*\ yQA) is trivial.

Lemma 4. // {G¡\ oQA} is a collection of groups, and H is a freely

indecomposable group, but not infinite cyclic, satisfying HQG

= n*£A Gi, then 35 G A such that H is a subgroup of a conjugate of G i

in G.

Proof. Suppose HQG= ITî6a G where H is freely indecomposable

but not infinite cyclic. By the subgroup theorem for free products

[l, p. 17], H= P*ITÜW Hr where F is a free group and VvQ V, Hv is
conjugate in G to a subgroup of Gj for some 5GA. By another theorem

[l, p. 26], any two free decompositions of a group possess isomorphic

refinements. Hence, since H is freely indecomposable, P*IT*erP»

must have exactly one nontrivial factor. H cannot be isomorphic to

P since the only freely indecomposable free group is infinite cyclic (or

trivial). Thus H = HV for some vQ V. The lemma follows.

We can now prove the desired theorem.

Theorem. For any ordinal a of cardinality ^c, there exists a class of

groups Ba such that L"(Ba)=La+1(Ba), but U(Ba)<Lß+l(Ba) when

ß<a.
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Proof. Let T== {Ta\aEK} be the class of torsion abelian groups

of the corollary to Lemma 2. By virtue of Lemma 1, 3PEP(K) such

that|P| =a.If FCA,define TV =nîsr Tyandput F~ {FT\ YCK}.
Define the class Ba= \ Fr\ YEP}.

Suppose {í"¡|/EA} is an upper-directed cover of subgroups in F

for some GET", G — FY. We assert that the set of sets {/|/EA} is an

upper-directed cover of subsets for Y, since

(1) If F^EFi,, then each free factor of F¡v by Lemma 4, is isomor-

phically contained in some free factor of P¡,, and so by the property

of the {r„|aEA} these free factors are isomorphic. This shows

liEh- Hence {/|/EA} is upper-directed provided {7"¡|/EA} is also.

(2) Consider, by Lemma 4, all of the conjugate subgroups of free

factors of G to which the free factors of the {T^/EA} belong. If no

conjugate of some free factors of G occurs, then Lemma 3 is violated

since { Fi\ IEA} covers G. Hence all free factors of G are represented,

and so {l\ IEA} covers Y.

Thus any such group-theoretic covering yields a set-theoretic

covering according to the correspondence Tx—+x. Likewise any set-

theoretic covering yields a group-theoretic covering.

Considering the local sequence Ba, L(Ba), • • • Lß(Ba), • • • the

theorem will be proved if we can eliminate the possibility that, at

some stage in the sequence of local covers leading to any GEL^(Ba)

r\F, some group H(£F occurs. Since the sequence of local covers

leading to G is well-ordered, such an 77 must occur for a first time at

some stage. Hence, WLOG, we may assume that 77 possesses an

upper-directed cover {T^IyET} of subgroups in 7".

Since HEGEF, by the subgroup theorem for free products we have

H~Q*YL%rtp where Q is a free group and each rp is isomorphic to

a subgroup of some member of T. Each free factor Ty, of each Fy,

7ET, by Lemma 4, is isomorphically contained in some tp, and hence,

for each such tp, rp^Tap. Since {T^-yEr} covers 77, by Lemma 3,

all of the r,, pET^, are obtained in this way, and consequently

H~ IX*sB Tap. In order to show HEF, which will establish the theo-

rem, we must show that no two Ta, T„p with pu p2EP, Pi^Pt, are

isomorphic. Suppose Tap « Ta . Then by Lemmas 3 and 4 and the

covering property of {7"7|7Er|, 37"Tl, 7"72, Fn satisfying:

(1) Some free factor of Fyi is conjugate to Tapi in Upe« Tap.

(2) Some free factor of Fyi is conjugate to Tapt in IT*eß 7"«,.

(3) FyiEFyta.nd Fy,EFyi.
This implies that Tapx and Tapt are conjugate in I~I<>eR Fap, a con-

tradiction since Tapi and Tap% are distinct free factors of Y1%r Tap.

This completes the proof.
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It will be observed that the only group-theoretic property of the

"incomparable" set, {Pa|a:G^4}. oí torsion abelian groups used in

the proof was the each P0 was freely indecomposable and not isomor-

phic to any proper subgroup of itself. Since the set-theoretic lemma

was proved for arbitrary ordinals, a stronger result about local se-

quences of groups will follow whenever a larger "incomparable" set of

such freely indecomposable groups can be displayed. The author has

not been able to find such a set of cardinality greater than c.

I would like to thank Dr. L. Sonneborn who offered several simpli-

fications of my original proof and Mr. W. Stromquist whose ideas

are used in several places.
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