GENERALIZED AUTOMATA AND
STOCHASTIC LANGUAGES

PAAVO TURAKAINEN

1. Introduction. In a probabilistic automaton, as defined e.g. in
[2] and [1], the initial vector as well as the transition matrices are
stochastic, and the final vector consists of 0's and 1’s only. This paper
is concerned with the so-called generalized automata where the ele-
ments of the initial vector, of the final vector and of the matrices are
allowed to be arbitrary real numbers. Our purpose is to prove that a
language is accepted by a generalized automaton if and only if it is
accepted by a probabilistic automaton, i.e., if and only if it is a sto-
chastic language. As an application, we show that the mirror image of
a stochastic language is a stochastic language.

2. Definitions and notations. The set of words, including the empty
word A, over a finite alphabet I is denoted by W(I). Subsets of W([)
are called lamguages. The length of a word PEW(J) is denoted by
I(P).

For any matrix 4, the notation A7 means the transpose of A.

DEFINITION. A generalized automaton over the alphabet I is an
ordered quadruple @A = (S, M, o, fo) where S={s;, - - -, 5.} is a
finite nonempty set (the set of states), M is a mapping of I into the
set of nXn matrices with real elements, 7, is an n-dimensional row
vector with real components (initial vector) and f, is an #n-dimensional
column vector with real components (final vector).

The domain of M is extended from I to W(I) by defining

M(A) = E, (n X n identity matrix),
M(xixe - -~ x) = M(x)M(x5) - - - M(x),
where 222 and x.E1.

For any real number 9, the language accepted by G with the cut-
point g is defined by

L(®Y, ) = {P € W(I)| M (P)fy > n}.

A language L is called a ®¥-language if and only if, for some G
and 5, L=L(®Y, ).

If 7o is a stochastic vector, f, consists of 0's and 1’s only and the
matrices M(x) (xEI) are stochastic, then &Y is a finite probabilistic
automaton and the language L(®¥U, u) is a stockastic language.
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3. Lemmas. To show how, for any generalized automaton, a finite
probabilistic automaton accepting the same language can be con-
structed, we begin with five lemmas.

LeEmMMA 1. Every ®¥U-language L is accepted by a generalized automa-
ton QU = (S1, M1, m1, f1) where, for each x S 1, the row and column sums
of Mi(x) equal zero.

ProorF. Let L=L(®%, 5), where &A= (S, M, m, fo) is an n-state
generalized automaton. Clearly, for each x €1, there exist real num-

bers ai(x), - - -, aa(x), Bo(x), - + «, Bu(x) such that in the matrix
B i o .-~ 0 o]
|
w@ o
M we =l 1 ME
ay(x) : } 0
—._—-: ———————— :___
Bo(x) 1 Ba(®) - - - Ba(x) 1 O
- l I

every row and column sum equals 0. From this construction it follows
that, for any nonempty word PEW(I) and for some real numbers
al(P)v ) an(P)v BO(P)t AR BH(P)’ MI(P) is obtained from (1)
by replacing x by P. Consequently, if we define 7= (0, 7, 0) and
fi=(0, 7, 0)T then, for the (n+2)-state generalized automaton
®&A, = (S1, My, 71, f1), the equation

11M1(P)f1 = foM(P)fo

holds whenever PEW(I). This implies that L= L(®%,, ), whence
the lemma follows.

LEMMA 2. Every @U-language L is accepted by a generalized automa-
ton O, = (S1, My, 71, f1) where, for each x E 1, the elements of My(x) are
nonnegative.

Proor. By Lemma 1, we may assume that L=L(®%, 5) for an
n-state generalized automaton ®¥A = (S, M, m,, fo) where the row and
column sums of the matrices M(x) (xEI) equal 0.

For any real number a, denote by N(a) the #X7n matrix whose
elements equal a. Let §>0 be so large that, for each x €1, the ele-
ments of the matrix Ms(x) =M (x)+N(8) are nonnegative. By the
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assumption concerning the matrices M(x) (xE€I), both M(x)N(a)
and N(a)M(x) are zero matrices. This implies that, for any x&T
and yEI,

2 My(xy) = M2(x)M2(y) = M(xy) + N(nd?).

It is easy to verify that the row and column sums of M(xy) equal 0.
Let PEW(I) be an arbitrary nonempty word. Proceeding induc-
tively, we infer from (2) that

) My(P) = M(P) + N(n'P-15KP),

Let A be the 2X2 matrix whose rows equal (0, 1). Consider the
(2n+2)-state generalized automaton ¥, = (Si, My, m, f1) where

T T T
T = (""o, oy Wofo, 0), fi = (fo, —fo, 1, 0)
and, for each x&1,

Mxx) 0 O
M(x) = 0 N@G) O
0 0 4

Consequently, for any nonempty word PE W(I),

My(P) 0 0
4) My(P) = 0 N(n¥P)-15KPY) (1,
0 0o 4l

Formulas (3) and (4) together with the definition of M;(A) now imply
that, for any word PEW(),

1l'|M1(P)f1 = WoM(P)fo.
Thus L =L(&¥;, n), whence the lemma follows.

LeMMA 3. Every ®%-language L is accepted by a generalized automa-
ton &A= (S1, My, m1, f1) where the matrices My(x) (xE1) are stochastic.

Proor. By Lemma 2, we may assume that L=L(®%, ) for an
n-state generalized automaton & = (S, M, o, fo) where the elements
of the matrices M(x) (x &) are nonnegative.

Let 6=1 be a real number larger than the largest row sum in the
matrices M(x) (x&EI). For each x&I, there exist real numbers
d:(x), 0=<d8;(x) =1, (=1, - - -, n) such that the matrix
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[ io- 0
—-——'_.—_—.

M) = | b |
: | 1M ()

5a() f

is stochastic. From this construction it follows that, for any non-
empty word PE W(I) and some real numbers 8:;(P) (=1, - - -, n),

o —

1 } 0---0
R
M) =| 5(P) |
: { b\-t(P)M(P)
3a(P) E

Consider the (n-3)-state generalized automaton
O = (51, My, 71, f1)

where

=070, fi=(0/f,—1,0"

and, for each xE1,

|
|
}
Ml(x) = :
|
|
|

|
|
!
M,(P) = :
|
|
|

0 1
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We now conclude that, for any word PEW(J),
oM (P)f1 = &Y PN (woM (P)fy — n).
Thus L =L(®¥,, 0), whence the lemma follows.

LEMMA 4. Every @U-language L is accepted by a generalized automa-
ton O, = (S, My, m, f1) where the initial vector w1 and the malrices
M,(x) (xEI) are stochastic.

Proor. By Lemma 3, we may assume that L=L(®%, ) for an
n-state generalized automaton & = (S, M, my, fo) where the matrices
M(x) (x&I) are stochastic.

Let 6>0 be so large that, for mo=(p1, + - +, pn), the components of
the vector (p1+6, - - -, p.+8) are positive. Denote p=p,+ - - -
+pn+2n6. Thus p>0. Consider the 2n-state generalized automaton
O, = (S1, My, m, f1) where

1|'1=P_1(P1+8,"‘,P»+8,B,"”6)7 fl=|: ";0]
—-Jo
and, for each x &1,
_ M(x) 0 ]
Miy(x) = [ 0 M(x)
We conclude that, for any word PE W(I),
mMi(P)fy = p~'moM (P)fo.
Thus L=L(G%,, n/p).

LEMMA 5. Assume that L=L(®%, ) where @A =(S, M, w0, fo) is a
generalized automaton such that the initial vector wy and the matrices
M(x) (xEI) are stochastic. For any real number ¢, L=L(®,;, n-+c)
where QU= (S, M, mo, f1) and fi=fo+(c, - -+, c)T.

Proor. For any word PEW(I),
‘)l'oM(P)fl = WoM(P)fo + C,
because 7w, M (P) is a stochastic vector. This proves the lemma.

4. Equivalence theorem and an application. Using Lemmas 4 and
5, we now establish the following

THEOREM 1. A language L is accepted by a generalized automaton if
and only if it is accepted by a finite probabilistic automaton, i.e., if and
only if it is a stochastic language.
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ProoF. The “if”-part is immediate. To prove the “only if”-part,
we may assume, by Lemma 4, that L =L(®¥, ) for an n-state gen-
eralized automaton ®A=({s;, - - -, s,,}, M, &, fo) where the initial
vector mo=(p1, - -+, pa) and the matrices M(x) (xE 1) are stochastic.
By choosing ¢ large enough in Lemma 5, we may assume that the
components of the final vector fo=(gy, * - -, g»)T are positive. Denote
g=qi+ - - - +¢s Thus ¢, - - -, ¢» and g are positive. Let ¢f =qi/q
for each7=1, - - -, n. Consider the n2-state probabilistic automaton

@?’[1 = ({517 Tty Sey S,,’}, Mly Tl)fl)
defined as follows. Let
w1 = n"me, - -+, mo) (m occurs # times)

and f; an n2-dimensional column vector whose ith component equals
1if s;€ {sl, Sni2y Stn4ds * C C sne} and equals 0 otherwise. For each
xE1, we define

g M(x) ¢/ M(x) - - ga M(x)
) My(z) = | gi M(2) ¢iM(x) - - - g M(2) |.
giM(x) qiM(x) - - - ga M(x)
Let PEW(I) be an arbitrary nonempty word. From the construction

of the matrices M;(x) it follows that (5) holds if x is replaced by the
word P. This implies that

6) mMy(P)fy = 22 2 pig; pii(P)

=1 j=1
where p;;(P) denotes the (7, j)th element of the matrix M(P). On the
other hand,

(M oM (P)fo = i i piqipsi(P).

=1 j=1
Combining (6) and (7), we obtain
nM(P)f1 = ¢ 'moM (P)fo.

This implies that the language L(®%,, 7/¢) contains exactly the same
nonempty words as the language L(®¥, 7). Since the union and the
intersection of a stochastic language and a regular language are both
stochastic languages, it follows that L(®¥, ) is a stochastic language.
This proves the theorem.

As an application of Theorem 1, we now establish the following
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theorem, where the mirror image of a language L, in symbols mi(L),
means the language obtained from L by writing all words backwards.

THEOREM 2. A language L is stochastic if and only if the mirror image
of L is stochastic.

Proor. Since mi(mi(L)) =L, it suffices to prove that if L is a sto-
chastic language, so is mi(L).

Let L=L(®%, 7), where &A= (S, M, mo, fo) is a finite probabilistic
automaton. Consider the generalized automaton ;= (S, My, 7y, f1)
where m=fI, fi=m¢ and, for each xEI, M,(x)=M(x)?. For each
word PE W(I), we now obtain

oM 1(mi(P))f1 = mM (P)fs,

which implies that L(®;, 1) =mi(L). Theorem 2 follows now from
Theorem 1.
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