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1. Introduction. In a probabilistic automaton, as defined e.g. in

[2] and [l], the initial vector as well as the transition matrices are

stochastic, and the final vector consists of O's and l's only. This paper

is concerned with the so-called generalized automata where the ele-

ments of the initial vector, of the final vector and of the matrices are

allowed to be arbitrary real numbers. Our purpose is to prove that a

language is accepted by a generalized automaton if and only if it is

accepted by a probabilistic automaton, i.e., if and only if it is a sto-

chastic language. As an application, we show that the mirror image of

a stochastic language is a stochastic language.

2. Definitions and notations. The set of words, including the empty

word A, over a finite alphabet / is denoted by W{I). Subsets of W{I)

are called languages. The length of a word PEW {I) is denoted by

1{P).
For any matrix A, the notation AT means the transpose of A.

Definition. A generalized automaton over the alphabet / is an

ordered quadruple ®2l = (S, M, iro, /o) where 5= \slt ■ • ■ , s„\ is a

finite nonempty set (the set of states), M is a mapping of / into the

set of nXn matrices with real elements, 7To is an «-dimensional row

vector with real components {initial vector) and/0 is an «-dimensional

column vector with real components {final vector).

The domain of M is extended from / to W{I) by defining

M {A.) = En       (» X n identity matrix),

M{xix2 • • • Xk) = M{xi)M{x2) • • • M{xk),

where k^2 and *,■£/.

For any real number rj, the language accepted by ©2Ï with the cut-

point r¡ is defined by

¿(©21, v) = {PE W{I) I T0M{P)fo >v}.

A language L is called a ®$i-language if and only if, for some ©21

andr,, L = L(@2í,7j).

If tto is a stochastic vector, /o consists of O's and l's only and the

matrices M{x) {xEI) are stochastic, then ®2I is a finite probabilistic

automaton and the language Z,(@2I, r¡) is a stochastic language.
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3. Lemmas. To show how, for any generalized automaton, a finite

probabilistic automaton accepting the same language can be con-

structed, we begin with five lemmas.

Lemma 1. Every ©2I-/a«gttage L is accepted by a generalized automa-

ton ©2li = (Si, Mi, 7Ti,/i) where, for each xEL the row and column sums

of Mi{x) equal zero.

Proof. Let L = Z,(®2I, 77), where ®2l = (S, M, w0, /o) is an «-state

generalized automaton. Clearly, for each xEL there exist real num-

bers ai{x), • ■ ■ , a„{x), ßo{x), ■ ■ • , ßn{x) such that in the matrix

(1) Mi(*) =

every row and column sum equals 0. From this construction it follows

that, for any nonempty word PEW {I) and for some real numbers

ai{P), • • • , an{P), ß0{P), ■ ■ ■ , ßAP), M¿P) is obtained from (1)

by replacing x by P. Consequently, if we define Ti = (0, wo, 0) and

/i=(0, /q, 0)r then, for the (« + 2)-state generalized automaton

©8ti = (Si, Mi, tti./i), the equation

TlMl(P)/,   =   ToM{P)fo

holds whenever PEW{I). This implies that i,=L(@2li, v)> whence

the lemma follows.

Lemma 2. Every ®%-language L is accepted by a generalized automa-

ton ®2Ii= (Si, Mi, 7Ti,/i) where, for each xEL the elements of Mi{x) are

nonnegative.

Proof. By Lemma 1, we may assume that L = Z(®21, v) for an

«-state generalized automaton ®2l = (S, M, 7r0,/o) where the row and

column sums of the matrices M{x) {xEI) equal 0.

For any real number a, denote by N{a) the «X« matrix whose

elements equal a. Let 5>0 be so large that, for each xEI, the ele-

ments of the matrix M2{x) =M{x)+ N{8) are nonnegative. By the
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assumption concerning the matrices M(x) (xEI), both M(x)N(a)

and N(a)M(x) are zero matrices. This implies that, for any xEI

and y EL

(2) M2(xy) = M2(x)M2(y) = M(xy) + N(no2).

It is easy to verify that the row and column sums of M(xy) equal 0.

Let PEW(I) be an arbitrary nonempty word. Proceeding induc-

tively, we infer from (2) that

(3) M2(P) = M(P) + iV(»,<i>>-1ÔI<p>).

Let A be the 2X2 matrix whose rows equal (0, 1). Consider the

(2w+2)-state generalized automaton ®9Ii = (Si, Mx, irufi) where

T T T

iri = (ttq, to, T0fo, 0),        h = (/o, —/o ,1,0)

and, for each xEI,

~M2(x) 0 0

0 N(S) 0

0 0     A

Consequently, for any nonempty word PE W(I),

-M2(P) 0

(4) Mi(P) 0

L   0

iV(Wi<P>-l5!(P>)

0

0

0

A

Formulas (3) and (4) together with the definition of Mi(A) now imply

that, for any word PEW (I),

TlMl(P)fl  =   ToM(P)fo.

Thus L = L(®2Ii, v), whence the lemma follows.

Lemma 3. Every ®$l-language L is accepted by a generalized automa-

ton ®3Ii = (Si, Mi, 7Ti,/i) where the matrices Mi(x) (xEI) are stochastic.

Proof. By Lemma 2, we may assume that Z, = L(®9I, 17) for an

n-state generalized automaton ®2l = (S, M, T0,fo) where the elements

of the matrices M(x) (xEI) are nonnegative.

Let S S: 1 be a real number larger than the largest row sum in the

matrices M(x) (xEI)- For each xEL there exist real numbers

0i(x), 0^5i(x)^l, (« = 1, • • • , n) such that the matrix
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M2{x)  =

is stochastic. From this construction it follows that, for any non-

empty word PEW{I) and some real numbers 8i{P) {i=\, •••,«),

M2{P) =

Consider the (n+3)-state generalized automaton

®?Ii = {SuMum,fi)

where

ri = (0, Tro, v, 0),       fi = (0, fo, -1, 0)T

and, for each xEI,

Mi{x) =

M2{x) 0

r1   i - r1

o       i

Consequently, for any nonempty word PEW {I),

Mi{P) =

M2{P)

5~í(p>    1 _ $-t(.P)

0 1
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We now conclude that, for any word PEW (I),

TiMi(P)fi = S-"pKToM(P)f0 - v).

Thus L = i(®2fi, 0), whence the lemma follows.

Lemma 4. Every ®%-language L is accepted by a generalized automa-

ton ®2li = (Si, Mi, xi, fi) where the initial vector ti and the matrices

Mi(x) (xEI) are stochastic.

Proof. By Lemma 3, we may assume that L = L(®?1, 77) for an

w-state generalized automaton ®9I = (S, M, 7To,/o) where the matrices

M(x) (xEI) are stochastic.

Let 5>0 be so large that, for 7r0 = (pi, • • • , pn), the components of

the vector (pi+ô, • • • , p„ + b) are positive. Denote p = pi+ • • •

-\-pn-\-2no. Thus p>0. Consider the 2w-state generalized automaton

®2ti = (S!, Mi, 7Ti,/i) where

ti = P~Kpi + 8, • • • , Pn + 8, S, • • • , fi),

and, for each xEI,

rM(x)     0 1
Mi(x) =

L   0       M(x)\

We conclude that, for any word PEW(I),

TlMi(P)f! = p-lT0M(P)fo.

ThusL = L(mi,rj/p).

Lemma 5. Assume that L = L(®% v) where ®2I = (S, M, to, fo) is a

generalized automaton such that the initial vector To and the matrices

M(x) (xEI) are stochastic. For any real number c, L = L(®%i, rç+c)

where ®2Ii = (S, M, T0,fi) andfi=fo+(c, • • • , c)T.

Proof. For any word PEW (I),

ToM(P)fi = ToM(P)fo + c,

because iroM(P) is a stochastic vector. This proves the lemma.

4. Equivalence theorem and an application. Using Lemmas 4 and

5, we now establish the following

Theorem 1. A language L is accepted by a generalized automaton if

and only if it is accepted by a finite probabilistic automaton, i.e., if and

only if it is a stochastic language.

*-[-3
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Proof. The "if-part is immediate. To prove the "only if-part,

we may assume, by Lemma 4, that Z, = Z,(®2I, 77) for an «-state gen-

eralized automaton ®2( = ( {Si, • • • , sn}, M, to, /o) where the initial

vector 7To = {pi, • • • , pn) and the matrices M{x) {xEI) are stochastic.

By choosing c large enough in Lemma 5, we may assume that the

components of the final vector/0= (ci, • • • , qn)T are positive. Denote

q =ç7i+ • • ■ +Çn- Thus qu ■ ■ ■ , q„ and q are positive. Let q[ —qt/q

for each i=l, • • • , «. Consider the n2-state probabilistic automaton

®2íi = ({îi, • • • , sn, ■ ■ ■ , sn*}, Mi, ti,/i)

defined as follows. Let

7Ti = »_1(fo, • • • , to)        (tto occurs n times)

and/i an »2-dimensional column vector whose ith component equals

1 if s¿G{si, sn+t, Stn+3, ■ ■ ■ , sni\ and equals 0 otherwise. For each

xEI, we define

(5) Mi{x)   m

■q{M{x) qiM{x) ■ ■ ■ q¿M{x)

q{M{x) qlM{x) ■ ■ ■ q¿M{x)

.q{M{x)    qlM{x)'-'-'-qn-M{x)A

Let PE W{I) be an arbitrary nonempty word. From the construction

of the matrices Mx{x) it follows that (5) holds if x is replaced by the

word P. This implies that

(6) rxMi{P)fi = ¿ ¿ p{q¡ p^P)
í=l ;=1

where pi,{P) denotes the {i,j)th element of the matrix M{P). On the

other hand,

(7) Troiif (p)/„ = ¿ Ê PiqjpiÀP)-
t=l i—1

Combining (6) and (7), we obtain

mMi{P)fi = q-iT0M{P)f0.

This implies that the language L(®2Ii, r¡/q) contains exactly the same

nonempty words as the language Z(®2i, tj). Since the union and the

intersection of a stochastic language and a regular language are both

stochastic languages, it follows that L(®2i, n) is a stochastic language.

This proves the theorem.

As an application of Theorem 1, we now establish the following
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theorem, where the mirror image of a language L, in symbols mi(L),

means the language obtained from L by writing all words backwards.

Theorem 2. A language L is stochastic if and only if the mirror image

of L is stochastic.

Proof. Since mi(mi(Z)) =L, it suffices to prove that if L is a sto-

chastic language, so is mi(L).

Let Z = L(®?1,77), where ®2i = (S, M, To,/o) is a finite probabilistic

automaton. Consider the generalized automaton ®2fi = (S, Mx, ?n, /1)

where Ti=fl, fi=Tcl and, for each xEI, Mi(x)=M(x)T. For each
word PEW (I), we now obtain

7riMi(mi(P))/i = ToM(P)f0,

which implies that L(®2fi, T7)=mi(i<). Theorem 2 follows now from

Theorem 1.
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