REGULARITY OF NET SUMMABILITY TRANSFORMS ON CERTAIN LINEAR TOPOLOGICAL SPACES

R. H. COX AND R. E. POWELL

The famous Silverman-Toeplitz theorem concerning the regularity of a matrix transform A with complex entries has undergone much study and many generalizations. Among these have been contributions by Kojima [5], Fraleigh [3], Adams [1], and Agnew [2] concerning the summability of multiple sequences. Melvin-Melvin [6] examined the case where each entry in A is a bounded linear operator on a Banach space. Recently Ramanujan [7] extended this idea to two types of linear topological spaces; namely, Fréchet spaces and locally bounded spaces. It is the purpose of this paper to generalize the results of Ramanujan by allowing the "rows" and "columns" of A to be nets of linear continuous transformations and to investigate conditions under which A will transform certain convergent nets into convergent nets.

We shall require the following notation and assumptions:

- X, Y: linear spaces over the complex numbers;
 - \mathfrak{N} : a collection of seminorms (see [8] for definition) on X which separates points of X (i.e., if $x \in X \{0\}$, then there is an $N \in \mathfrak{N}$ such that N(x) > 0);
 - \mathfrak{M} : a collection of seminorms on Y that separates points;
 - \mathfrak{F} : the locally convex, Hausdorff topology on X generated by \mathfrak{N} ;
 - g: the locally convex, Hausdorff topology on Y generated by \mathfrak{M} :
- $\{D, \leq\}$: a directed set with *finite* initial segments (i.e., if $d \in D$, then the set $\{e \mid e \in D \text{ and } e \leq d\}$ is finite);
 - C: the collection of all bounded convergent nets from D to X. In this context, a net will be said to be convergent provided it has a limit. For a general discussion of nets, see [4]. If $f \in C$ and $N \in \mathfrak{N}$, then let $N^c(f) = \sup\{N(f(d)) | d \in D\}$.
 - $\mathfrak{N}^{\mathfrak{o}}$: the set of all $N^{\mathfrak{o}}$, for $N \in \mathfrak{N}$;
 - \mathfrak{F}^e : the locally convex, Hausdorff topology on C generated by \mathfrak{N}^e .

We shall assume, for the remainder of the paper, that the linear topological space $\{C, \mathfrak{F}^c\}$ is barrelled (see [8] for definition). This

Received by the editors July 12, 1968.

condition is necessary and sufficient (so long as Y is nondegenerate) to insure that the following version of the Uniform Boundedness Principle holds. For a proof and related results, see Chapter IV of [8]; and, particularly, Theorem 3 on page 69.

THEOREM 1. If 3 is a collection of linear continuous operators from $\{C, \mathfrak{F}^c\}$ to $\{Y, \mathfrak{F}\}$ with the property

if
$$f \in C$$
 and $M \in \mathfrak{M}$, then $\{M(T(f)) \mid T \in 5\}$ is bounded;

then, for each $M \in \mathfrak{M}$, there is a finite subset $\{N_i^c\}_{i=1}^n$ of \mathfrak{N}^c and a positive number K such that

if
$$f \in C$$
 and $T \in \mathfrak{I}$, then $M(T(f)) \leq K \sup_{1 \leq i \leq n} N_i^{\mathfrak{c}}(f)$.

Observe that, if \mathfrak{A} is countable and $\{X, \mathfrak{F}\}$ is complete, then $\{C, \mathfrak{F}^e\}$ is second category and thus barrelled. That is, if $\{X, \mathfrak{F}\}$ is a Fréchet space then $\{C, \mathfrak{F}^e\}$ is barrelled.

Let A be a function from $D \times D$ into the set of linear continuous functions from $\{X, \mathfrak{F}\}$ to $\{Y, \mathfrak{G}\}$ (denoted hereafter by $\mathfrak{L}(X, Y)$). The $D \times D$ matrix A is said to be convergence preserving provided that, if $f \in C$ and $d \in D$, then the net $h(e) = \sum_{e' \leq e} A(d, e') f(e')$ is bounded and convergent in $\{Y, \mathfrak{G}\}$; and the net A(f) defined, for $d \in D$, by $A(f)(d) = \lim_{e} h(e)$ is also bounded and convergent in $\{Y, \mathfrak{G}\}$. Further, if $L \in \mathfrak{L}(X, Y)$, then A is said to be L-regular provided A is convergence preserving and, if $f \in C$, then A(f) has limit $L(\lim_d f(d))$.

The main result of this paper is the following Toeplitz theorem which generalizes Theorem 1 of [7].

THEOREM 2. Suppose $\{Y, G\}$ is complete—in the sense that every Cauchy net from D to Y is a convergent net. The function A is convergence preserving if, and only if, the following four statements are true:

(1) For each $M \in \mathfrak{M}$, there is a finite subset $\{N_i^c\}_{i=1}^n$ of \mathfrak{A}^c and a positive number K such that, if $f \in C$ and $(d, e) \in D \times D$, then

$$M\left(\sum_{e'\leq e} A(d, e')f(e')\right) \leq K \sup_{1\leq i\leq n} N_i^e(f).$$

(2) If $f \in C$ and $d \in D$, then the net $h(e) = \sum_{e' \le e} A(d, e') f(e')$ is convergent in $\{Y, g\}$.

(3) If $f \in C$ with limit 0 and $d \in D$ then the net defined, for $d_0 \in D$, by

$$g(d_0) = \lim_{e} \sum_{e' < e: d \neq e'} A(d_0, e') f(e'),$$

is convergent in {Y, g}.

(4) If $x \in X$, then the net defined, for $d \in D$, by

$$k(d) = \lim_{e} \sum_{e' \leq e} A(d, e')(x),$$

is convergent in $\{Y, g\}$.

PROOF. Suppose that A is convergence preserving. For each pair (d, e) in $D \times D$, let $T_{(d, e)}$ be the linear function from C to Y defined, for $f \in C$, by $T_{(d, e)}(f) = \sum_{e' \leq e} A(d, e') f(e')$. Since D has finite initial segments and A has entries in $\mathcal{L}(X, Y)$, it is easily seen that $T_{(d, e)}$ is continuous from $\{C, \mathfrak{F}^e\}$ to $\{Y, \mathfrak{G}\}$. Furthermore, if $d \in D$ and $f \in C$, then the net $h(e) = T_{(d,e)}(f)$ is bounded in $\{Y, \mathfrak{G}\}$. Suppose $M \in \mathfrak{M}$ and $d \in D$. By Theorem 1, there is a finite subset $\{N_i^e(f)\}_{i=1}^n$ in \mathfrak{N}^e and a positive number K such that, if $e \in D$ and $f \in C$, then

$$M(T_{(d,e)}(f)) \leq K \sup_{1 \leq i \leq n} N_i^e(f).$$

Thus, if $f \in C$,

$$M\left(\lim_{e} T_{(d,e)}(f)\right) \leq K \sup_{1 \leq i \leq n} N_{i}^{e}(f);$$

and the linear function defined, for $f \in C$, by $T_d(f) = \lim_e T_{(d,e)}(f)$ is continuous from $\{C, \mathfrak{F}^e\}$ to $\{Y, \mathfrak{F}^e\}$. Finally, if $f \in C$, then the net $k(d) = T_d(f)$ is bounded in $\{Y, \mathfrak{F}^e\}$ and a reapplication of Theorem 1 shows that statement (1) holds. Statement (2) is immediate from the definition. Concerning statement (3), suppose $d \in D$ and $f \in C$. If $e \in D$, let

$$f'(e) = f(e)$$
 if $d \le e$,
= 0 if $d < e$.

Then $f' \in C$ has limit 0; and, if $(d_0, e) \in D \times D$,

$$\sum_{e' \leq e} A(d_0, e') f'(e') = \sum_{e' \leq e; d \leq e'} A(d_0, e') f(e').$$

Statement (3) now follows. Finally, let $x \in X$ and define, for $d \in D$, f(d) = x. Thus $f \in C$ and statement (4) follows from statement (2) and the definition.

To prove the converse, suppose that statements (1), (2), (3) and (4) hold; $M \in \mathfrak{M}$, $\epsilon > 0$, and $f \in C$. Let $\{N_i^c\}_{i=1}^n$ be a finite subset of \mathfrak{A}^c and K a positive number with the properties of statement (1). Let $d_0 \in D$ be such that, if $d \in D$ and $d_0 \leq d$, then $N_i(f(d) - \lim f) < \epsilon/4K$ for $i = 1, 2, \dots, n$. Secondly, let $d_1 \in D$ be such that, if $d \in D$ and $d_1 \leq d$, then

(a)
$$M\left(\lim_{e}\sum_{e'\leq e}A(d,e')(\lim f)-\lim_{e}\sum_{e'\leq e}A(d_1,e')(\lim f)\right)<\frac{\epsilon}{4}$$

and

(b)
$$M\left(\lim_{e} \sum_{e' \leq e; d_0 \neq e'} A(d, e')(f(e') - \lim f)\right)$$

$$-\lim_{e} \sum_{e' \leq e; d_0 \nleq e'} A(d_1, e') (f(e') - \lim f) \bigg) < \frac{\epsilon}{4} \cdot$$

If $d \in D$ and $d_1 \leq d$, then

$$M\left(\lim_{e}\sum_{e'<\epsilon}A(d,e')f(e')-\lim_{e}\sum_{e'<\epsilon}A(d_1,e')f(e')\right)<\epsilon.$$

Thus, since $\{Y, g\}$ is net complete, A is convergence preserving and Theorem 2 is proved.

An analogous argument will yield a proof of the following theorem where $L \in \mathfrak{L}(X, Y)$.

THEOREM 3. The function A is L-regular if, and only if, statements (1) and (2) of Theorem 2 hold and the following two statements also hold:

(3') If $f \in C$ with limit 0 and $d \in D$ then the net defined, for $d_0 \in D$, by

$$g(d_0) = \lim_{e} \sum_{e' \leq e; d \nleq e'} A(d_0, e') f(e'),$$

is convergent to 0 in $\{Y, g\}$.

(4') If $x \in X$, then the net defined, for $d \in D$, by

$$k(d) = \lim_{\epsilon \text{ } e' \leq \epsilon} A(d, e')(x),$$

is convergent to L(x) in $\{Y, g\}$.

It should be noted that in Theorem 3 we need not require that $\{Y, g\}$ be net complete.

We see that Theorems 2 and 3 are extensions of Theorems 1 and 2 of [7], as well as the usual Silverman-Toeplitz theorems. However, there is one application which is important in the study of functions of several complex variables that is included in the present theory but not included in [7]. In particular, suppose that each of $\{X, \mathfrak{F}\}$ and $\{Y, \mathfrak{F}\}$ is the complex plane with the usual topology, k is a positive integer, and D is the set of k-tuples of positive integers where, if each of n and m is in D, then n < m provided that, for $i = 1, 2, \dots, k$, n(i) < m(i). In this case, letting I denote the identity function on X,

we have the following theorem (of course, in this setting, A is simply a $D \times D$ matrix of complex numbers).

THEOREM 4. The function A is I-regular if, and only if, the following three statements are true:

- (1) There is a positive number K such that, if $(d, e) \in D \times D$, then $\sum_{e' \le e} |A(d, e')| \le K$.
 - (2) If $d \in D$, then the complex number net defined, for $d_0 \in D$, by

$$g(d_0) = \lim_{e} \sum_{e' \le e; d \nmid e'} |A(d_0, e')|$$

is convergent to 0.

(3) The net defined, for $d \in D$, by

$$k(d) = \lim_{e} \sum_{e' \leq e} A(d, e')$$

has limit 1.

PROOF. In this context, statements (1) and (2) of Theorem 2 are equivalent to statement (1). Also statement (4') of Theorem 3 is equivalent to statement (3). As statement (2) implies statement (3') of Theorem 3, all that remains is to show that if A is I-regular, then statement (2) holds. Hence, suppose that A is I-regular, $d \in D$; and for each $d_0 \in D$, let

$$g(d_0) = \lim_{\substack{\bullet \\ e' \leq e; d \nmid e'}} \left| A(d_0, e') \right|.$$

Suppose further that g does not have limit 0, and let $\epsilon > 0$ be such that, if $e \in D$, then there is an > e' with the property that $g(e') > \epsilon$. Let $S = \{d' \mid d' \in D, d \leq d'\}$, $e_1 \in D$ such that $e_1 > 1$ (the constant 1 member of D) and K_1 a finite subset of S such that

$$\sum_{e \in S} |A(e_1, e)| - \sum_{e \in K_1} |A(e_1, e)| < \frac{\epsilon}{4}$$

Suppose p is a positive integer and disjoint finite subsets K_1 , K_2 , $\cdots K_p$ of S have been chosen, along with elements e_1 , e_2 , \cdots , e_p of D. Using the fact that if $e \in D$, then the net $A(\cdot, e)$ has limit 0; let $e_{p+1} \in D$ be such that

$$e_p < e_{p+1},$$

$$\sum_{e \in \cup_{i=1}^p K_i} |A(e_{p+1}, e)| < \frac{\epsilon}{4}, \quad \text{and} \quad g(e_{p+1}) > \epsilon.$$

Let K_{p+1} be a finite subset of S such that $K_{p+1} \cap \bigcup_{i=1}^{p} K_i = \emptyset$ and

$$\sum_{e \in S} \left| A(e_{p+1}, e) \right| - \sum_{e \in K_{p+1}} \left| A(e_{p+1}, e) \right| < \frac{\epsilon}{4}.$$

Define the member f of C as follows: if $e \in D$, then

$$f(e) = |A(e_n, e)| / A(e_n, e)$$
 if $e \in K_n$ and $A(e_n, e) \neq 0$,
= 0, otherwise.

If p is a positive integer, then

$$\left| \lim_{e} \sum_{e' \leq e} A(e_p, e') f(e') \right| \geq \sum_{e' \in K_p} \left| A(e_p, e') \right| - \sum_{e' \in S - K_p} \left| A(e_p, e') \right|$$

$$= \sum_{e' \in S} \left| A(e_p, e') \right| - 2 \sum_{e' \in S - K_p} \left| A(e_p, e') \right|$$

$$> \epsilon - \epsilon/2 = \epsilon/2.$$

Since the sequence e is cofinal in D, we see that A(f) does not have limit 0. This contradiction establishes Theorem 4.

BIBLIOGRAPHY

- 1. C. R. Adams, On summability of double series, Trans. Amer. Math. Soc. 34 (1932), 215-230.
- 2. R. P. Agnew, On summability of multiple sequences, Amer. J. Math. 56 (1934), 62-68.
- 3. P. A. Fraleigh, Regular bilinear transformations of sequences, Amer. J. Math. 53 (1931), 697-709.
 - 4. J. L. Kelly, General topology, Van Nostrand, Princeton, N. J., 1955.
 - 5. T. Kojima, On the theory of double sequences, Tohoku Math. J. 21 (1922), 3-14.
- 6. H. Melvin-Melvin, On generalized K-transformations in Banach spaces, Proc. London Math. Soc. 53 (1951), 83-108.
- 7. M. S. Ramanujan, Generalized Kojima-Toeplitz matrices in certain linear topological spaces, Math. Ann. 159 (1965), 365-373.
- 8. A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Univ. Press, New York, 1964.

University of Kentucky