REGULARITY OF NET SUMMABILITY TRANSFORMS
ON CERTAIN LINEAR TOPOLOGICAL SPACES

R. H. COX AND R. E. POWELL

The famous Silverman-Toeplitz theorem concerning the regularity
of a matrix transform 4 with complex entries has undergone much
study and many generalizations. Among these have been contribu-
tions by Kojima [5], Fraleigh [3], Adams [1], and Agnew [2] con-
cerning the summability of multiple sequences. Melvin-Melvin [6]
examined the case where each entry in A4 is a bounded linear operator
on a Banach space. Recently Ramanujan [7] extended this idea to
two types of linear topological spaces; namely, Fréchet spaces and
locally bounded spaces. It is the purpose of this paper to generalize
the results of Ramanujan by allowing the “rows” and “columns” of
A to be nets of linear continuous transformations and to investigate
conditions under which 4 will transform certain convergent nets into
convergent nets.

We shall require the following notation and assumptions:

X, Y: linear spaces over the complex numbers;

9: a collection of seminorms (see [8] for definition) on X
which separates points of X (i.e., if x€X— {0}, then
there is an NE 9 such that N(x) >0);

<M: a collection of seminorms on Y that separates points;

§: the locally convex, Hausdorff topology on X generated
by a;

G: the locally convex, Hausdorff topology on Y generated
by a;

{ D, = }: a directed set with finife initial segments (i.e., if dED,
then the set {eleED and e§d} is finite);

C: the collection of all bounded convergent nets from D to X.
In this context, a net will be said to be convergent pro-
vided it has a limit. For a general discussion of nets, see
[4].1f fE Cand NE 9, then let N<(f) =sup{ N(f(d))| dED}.

9e: the set of all Ne, for NEI;

&e: the locally convex, Hausdorff topology on C generated
by 9te.

We shall assume, for the remainder of the paper, that the linear
topological space {C, 5‘} is barrelled (see [8] for definition). This
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condition is necessary and sufficient (so long as Y is nondegenerate)
to insure that the following version of the Uniform Boundedness
Principle holds. For a proof and related results, see Chapter IV of
[8]; and, particularly, Theorem 3 on page 69.

THEOREM 1. If 3 is a collection of linear continuous operators from
{C, 5} to { Y, G} with the property

if fEC and M € I, then {M(T(f))| T € 3} is bounded;

then, for each M &N, there is a finite subset {N,‘ }_1 of N and a positive
number K such that

iff ECand T € 3, then M(T(f)) < K sup Ni(f).
1SiSn

Observe that, if 9T is countable and { X, SF} is complete, then
{ C, 5"} is second category and thus barrelled. That is, if {X , $F} is
a Fréchet space then {C, 3¢} is barrelled.

Let A be a function from D XD into the set of linear continuous
functions from {X, § } to { Y, g} (denoted hereafter by £(X, ¥)).
The D X D matrix A4 is said to be convergence preserving provided that,
if fEC and dED, then the net k(e) = Z,,s. A(d, ¢)f(e') is bounded
and convergent in {Y, g}; and the net A(f) defined, for d€ED, by
A(f)(d) =lim, k(e) is also bounded and convergent in { Y, ¢ } . Further,
if LEL(X, V), then 4 is said to be L-regular provided 4 is conver-
gence preserving and, if fE€C, then A4 (f) has limit L(limq f(d)).

The main result of this paper is the following Toeplitz theorem
which generalizes Theorem 1 of [7].

THEOREM 2. Suppose { Y, g} is complete—in the semse that every
Cauchy net from D to Y is a convergent net. The function A is conver-
gence preserving if, and only if, the following four statements are true:

(1) For each MEIM, there is a finite subset {N‘,’ In ., of 9 and a
positive number K such that, if fEC and (d, e) D XD, then

M( > A(d, e’)f(e’)) < K sup Nif).

é'se 1SiSn

(2) If fEC and dED, then the net h(e)= D ose A, €)f(e) is
convergent in { ¥, G}.

(3) If fEC with limit 0 and AED then the net defined, for doED, by
gldo) =lim X,  A(do, €)f(e),

¢ c¢'ge;dde’

is convergent in { ¥, G}.



1969] REGULARITY OF NET SUMMABILITY TRANSFORMS 473

(4) If xE€X, then the net defined, for d€ D, by
k(@) =1lim Y A(d, ¢)(z),

€ e'ze
is convergent in { Y, G}.

Proor. Suppose that 4 is convergence preserving. For each pair
(d, e) in DXD, let T,  be the linear function from C to ¥ defined,
for fEC, by Tw, o(f) = D ese A(d, €)f(e’). Since D has finite initial
segments and 4 has entries in £(X, Y), it is easily seen that Ty, ) is
continuous from {C, ‘J°} to { Y, g}. Furthermore, if dED and fEC,
then the net k(e) =Tq,(f) is bounded in {Y, g}. Suppose MEM
and dED. By Theorem 1, there is a finite subset {Nf(f) }r,in 9t
and a positive number K such that, if e€D and f&EC, then

M(Tuo(f) S K sup N

Thus, if fEC,
M(lim T(,,,,)(j)) < K sup Ni(f);

1Sisn
and the linear function defined, for f&C, by Ty(f) =lim, T, (}) is
continuous from {C, 3¢} to { ¥, g}. Finally, if fEC, then the net
k(d) = Tu(f) is bounded in { ¥, g} and a reapplication of Theorem 1
shows that statement (1) holds. Statement (2) is immediate from the
definition. Concerning statement (3), suppose d&D and f&C. If
eED, let

flleg=fle) ifdke
=0 ifd <e.

Then f'€C has limit 0; and, if (do, ) ED XD,
2 Ao, O)f'(€) = X Alds, ENf(e).

e'se e'se;d‘o’
Statement (3) now follows. Finally, let x€X and define, for d&D,
f(@) =x. Thus fEC and statement (4) follows from statement (2) and
the definition.

To prove the converse, suppose that statements (1), (2), (3) and
(4) hold; MEM, €>0, and fEC. Let { N:}1., be a finite subset of 9°
and K a positive number with the properties of statement (1). Let
doED be such that, if dED and do=d, then N;(f(d)—lim f) <e/4K
for =1, 2, - - -, n. Secondly, let diE€D be such that, if dED and
di=d, then
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(a) M(lim > A(d, €)(lim f) — lim >, A(d, ¢)(lim f)) < i.

e e'ge ¢ e'gzge

and

(b) M(lim > AW, €)(f(E) = limf)

e e seidpfe’

—lim D, A(dy, €)(f(¢) — lim f))<£—-

e ¢'se;do#c'

If dED and d,=d, then

M(lim > A(d, e)f(e') — lim X A(dy, e’)f(e’)) <e
e g'ge € e'se
Thus, since { ¥, g} is net complete, 4 is convergence preserving and
Theorem 2 is proved.

An analogous argument will yield a proof of the following theorem
where LEL(X, V).

THEOREM 3. The function A is L-regular if, and only if, statements
(1) and (2) of Theorem 2 hold and the following two statements also hold:
(3") If f&€C with limit 0 and d €D then the net defined, for doED, by

g(d) =lim 35 A(dy, )f(e),
e e'sedfe’
is convergent to 0 in { Y, G}.
(4") If x& X, then the net defined, for €D, by

k(@) = lim 3] A(d, ¢)(x),

e e'ge
is convergent to L(x) in { ¥, g}.

It should be noted that in Theorem 3 we need not require that
{ ¥, g} be net complete.

We see that Theorems 2 and 3 are extensions of Theorems 1 and 2
of [7], as well as the usual Silverman-Toeplitz theorems. However,
there is one application which is important in the study of functions
of several complex variables that is included in the present theory
but not included in [7]. In particular, suppose that each of {X, 5}
and { Y, g} is the complex plane with the usual topology, & is a posi-
tive integer, and D is the set of k-tuples of positive integers where, if
each of » and m isin D, then n <m provided that, fori=1,2, - - - , k,
n(7) <m(7). In this case, letting I denote the identity function on X,
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we have the following theorem (of course, in this setting, 4 is simply
a D XD matrix of complex numbers).

THEOREM 4. The function A is I-regular if, and only if, the following
three statements are true:

(1) There is a positive number K such that, if (d, ¢) ED XD, then
Ec'se l A (dv 6’)] éK-

(2) If dED, then the complex number net defined, for doED, by

g(do) = lim Z l A(do, e’)l

e c'sc;d#e'

is convergent to 0.
(3) The net defined, for dED, by

k(d) =lim X A, ¢)

e e'ge
has limit 1.

Proor. In this context, statements (1) and (2) of Theorem 2 are
equivalent to statement (1). Also statement (4’) of Theorem 3 is
equivalent to statement (3). As statement (2) implies statement (3’)
of Theorem 3, all that remains is to show that if 4 is I-regular, then
statement (2) holds. Hence, suppose that 4 is I-regular, d&D; and
for each doED, let

g@) =lim X | 4@y )],
e e'gedie
Suppose further that g does not have limit-0, and let ¢ >0 be such that,
if eED, then there is an >-¢ with the property that g(e’) >e. Let
S={d’|d’ED, d£d’'}, s €D such that e;>1 (the constant 1 member
of D) and K, a finite subset of S such that

T | Aena| = T | Aol <=
eES ecK, 4
Suppose p is a positive integer and disjoint finite subsets K;, K,,
-« « K, of S have been chosen, along with elements ey, e, - - -, €, of
D. Using the fact that if e€D, then the net A(-, ) has limit 0; let
e,11ED be such that

€
ep < €py1, E I A(epy, e)l < -4— , and glepsr) > e

P
leu‘_lK;

Let K, be a finite subset of S such that K,./N\U..; K;=& and
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2 | Alepn )| = 2 | Alepn, 0)] <—;—-

eeS ¢€EKp 1y
Define the member f of C as follows: if eE€D, then

fle) = I A (e, e)l /A(en, €) ifeE K, and A(es, e) #0,
=0, otherwise.

If p is a positive integer, then

lim 35 Aep, €)(€) | 2 2 | Alen )| = 2 | Ales €]

€ e'ze e'€K, e’ €ES—K,
= E l A(ep) 6,) l -2 E l A(em el) ‘
e’'€S e'€ES—Ky
>e—¢/2 =¢/2.

Since the sequence e is cofinal in D, we see that 4A(f) does not have
limit 0. This contradiction establishes Theorem 4.
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