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The famous Silverman-Toeplitz theorem concerning the regularity

of a matrix transform A with complex entries has undergone much

study and many generalizations. Among these have been contribu-

tions by Kojima [5], Fraleigh [3], Adams [l], and Agnew [2] con-

cerning the summability of multiple sequences. Melvin-Melvin [6]

examined the case where each entry in A is a bounded linear operator

on a Banach space. Recently Ramanujan [7] extended this idea to

two types of linear topological spaces; namely, Fréchet spaces and

locally bounded spaces. It is the purpose of this paper to generalize

the results of Ramanujan by allowing the "rows" and "columns" of

A to be nets of linear continuous transformations and to investigate

conditions under which A will transform certain convergent nets into

convergent nets.

We shall require the following notation and assumptions:

X, Y: linear spaces over the complex numbers;

91: a collection of seminorms (see [8] for definition) on X

which separates points of X (i.e., if xEX— {o}, then

there is an iV£3l such that N{x) >0);

3TC: a collection of seminorms on F that separates points;

ï: the locally convex, Hausdorff topology on X generated

by 31;
g: the locally convex, Hausdorff topology on Y generated

by 9TC;

{D, ^ } : a directed set with finite initial segments (i.e., if ¿£Z>,

then the set {e|e£Z? and e^d\ is finite);

C: the collection of all bounded convergent nets from D to X.

In this context, a net will be said to be convergent pro-

vided it has a limit. For a general discussion of nets, see

[4]. If /£Cand NE 31, then let N'(f) = sup {N(J{d)) | dED}.
31": the set of all Ne, for N£3l;

$": the locally convex, Hausdorff topology on C generated

by 31«.

We shall assume, for the remainder of the paper, that the linear

topological space \C, if'} is barrelled (see [8] for definition). This
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condition is necessary and sufficient (so long as Y is nondegenerate)

to insure that the following version of the Uniform Boundedness

Principle holds. For a proof and related results, see Chapter IV of

[8]; and, particularly, Theorem 3 on page 69.

Theorem 1. If 3 is a collection of linear continuous operators from

{C, 3*} to {Y,g} with the property

iff EC and M EW, then {M(T(f)) \ T E 3} is bounded;

then, for each ME9TC, there is a finite subset {N¡ }"_i of 9lc and a positive

number K such that

iff EC and TE 3, then M(T(f)) á K sup N\(f).
iSiân

Observe that, if 91 is countable and {X, i} is complete, then

[C, 5C} is second category and thus barrelled. That is, if {X, $} is

a Fréchet space then { C, *5C} is barrelled.

Let A be a function from DXD into the set of linear continuous

functions from {X, ff} to { Y, g} (denoted hereafter by £(X, Y)).

The DXD matrix A is said to be convergence preserving provided that,

if fEC and dED, then the net h(e) = 2Z«'s« A(d, e')f(e') is bounded
and convergent in { Y, 9} ; and the net A(f) defined, for dED, by

A (f) (d) = lime h(e) is also bounded and convergent in { Y, 9}. Further,

if LE£(X, Y), then A is said to be L-regular provided A is conver-

gence preserving and, if/£C, then A (f) has limit L(\imdf(d)).

The main result of this paper is the following Toeplitz theorem

which generalizes Theorem 1 of [7].

Theorem 2. Suppose { Y, 9} is complete—in the sense that every

Cauchy net from D to Y is a convergent net. The function A is conver-

gence preserving if, and only if, the following four statements are true:

(1) For each JWE3TC, there is a finite subset {iVjfj'.j of 91" and a

positive number K such that, if fEC and (d, e)EDXD, then

MÍY,A(d, e')f(e')) = K sup #■(/).
\ «'s« / iS.Sn

(2) If fEC and dED, then the net h(e) = ^2e-stA(d, e')f(e') is

convergent in { Y, 9} •

(3) If fEC with limit 0 and dED then the net defined, for doED, by

g(do) = lim    £    ¿(áo, e')f(e'),
*     c'£e;d$e'

is convergent in { F, 9} •
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(4) // xEX, then the net defined, for dED, by

k{d) =limT A{d,e'){x),

is convergent in { Y, g}.

Proof. Suppose that A is convergence preserving. For each pair

{d, e) in DXD, let T&,,) be the linear function from C to Y defined,

for fEC, by T(d, «>(/) = ]C«'s« A iß, e')f{e'). Since D has finite initial
segments and A has entries in £{X, Y), it is easily seen that T(d, e> is

continuous from {C, fJe} to { Y, g}. Furthermore, if dED and fEC,

then the net h{e) — T(d,e){f) is bounded in { Y, g}. Suppose Af£3TC

and dED. By Theorem 1, there is a finite subset {Nc({f)\"mi in 31"

and a positive number X such that, if e££> and/£C, then

M{T«.e){f)) Ú K sup itf(/).

Thus, if/£C,

iff Um rtf>.,(/)) =s * sup #■(/);

and the linear function defined, for/£C, by Td{f) =lime T(d¡e){f) is

continuous from {C, 5C} to { F, g}. Finally, il fEC, then the net

k{d) = r¿(/) is bounded in { Y, g} and a reapplication of Theorem 1

shows that statement (1) holds. Statement (2) is immediate from the

definition. Concerning statement (3), suppose dED and fEC. If

eED, let

f'{e)=f{e)       Hd$e,

= 0 if d < e.

Then f'EC has limit 0; and, if (d0, e)EDXD,

£ il (do, «W) =     ¿Z    Ado, e')f{e').
«'S« e'S«;d^fl'

Statement (3) now follows. Finally, let xEX and define, for dED,

f{d) =x. Thus fEC and statement (4) follows from statement (2) and

the definition.
To prove the converse, suppose that statements (1), (2), (3) and

(4) hold; ME3TC, e>0, and/£C. Let {Nï}ïmi be a finite subset of 31"

and K a positive number with the properties of statement (1). Let

doED be such that, if dED and d0^d, then Ni(f{d)-lim f)<e/iK
for * = 1, 2, • • • , «. Secondly, let ¿i££> be such that, if ¿£Z> and

d\Sd, then
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(a)    M (lim £ A{d, e')(\imf) - lim £ A(du e')(lim/)\ <
\   e     «'s« *     «'S« /

and

(b)    M (lim     £     A(d,e')(f(e')-limf)
\   «    «'se;dg^<'

- lim     £    ^ (¿„ e') Cf(e') - lim /)) < -J-
c    e's«;d(ijie' / 4

If ¿E-D and ¿ig¿, then

M (lim E ¿(<*. «W) - lim E ¿(¿i, «W))
\   «    «'se •    «'se /

< e.

Thus, since { Y, g} is net complete, A is convergence preserving and

Theorem 2 is proved.

An analogous argument will yield a proof of the following theorem

where LE£(X, Y).

Theorem 3. The function A is L-regular if, and only if, statements

(1) and (2) of Theorem 2 hold and the following two statements also hold:

(3') If fEC with limit 0 and dED then the net defined, for d0ED, by

g(do)=lim    2D    A(d0,e')f(e'),
«    e'Se;d^e'

15 convergent to 0 in { Y, g}.

(4') If xEX, then the net defined, for dED, by

k(d) =\imy£,A(d,e')(x),
e     e'S«

is convergent to L(x) in { Y, g}.

It should be noted that in Theorem 3 we need not require that

{ Y, g} be net complete.

We see that Theorems 2 and 3 are extensions of Theorems 1 and 2

of [7], as well as the usual Silverman-Toeplitz theorems. However,

there is one application which is important in the study of functions

of several complex variables that is included in the present theory

but not included in [7]. In particular, suppose that each of {X, $}

and { Y, g} is the complex plane with the usual topology, k is a posi-

tive integer, and D is the set of ¿-tuples of positive integers where, if

each of n and m is in D, then n <m provided that, for i=\,2, • • • ,k,

n(i) <m(i). In this case, letting / denote the identity function on X,
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we have the following theorem (of course, in this setting, A is simply

aDXD matrix of complex numbers).

Theorem 4. The function A is I-regular if, and only if, the following

three statements are true:

(1) There is a positive number K such that, if {d, e)EDXD, then

E«'S«M(d, e')\£K.
(2) // dED, then the complex number net defined, for d0ED, by

g(d„)=lim    2     \A{d0,e')\
e    «'Áe;die*

is convergent to 0.

(3) The net defined, for dED, by

k{d) = lim £ A{d, e')
'    e's«

has limit 1.

Proof. In this context, statements (1) and (2) of Theorem 2 are

equivalent to statement (1). Also statement (4') of Theorem 3 is

equivalent to statement (3). As statement (2) implies statement (3')

of Theorem 3, all that remains is to show that if A is /-regular, then

statement (2) holds. Hence, suppose that A is /-regular, dED; and

for each d0ED, let

g(do)=lim    ¿2    U(do,e')|.
*    e'se;dfe'

Suppose further that g does not have limit 0, and let e>0 be such that,

if eED, then there is an > e with the property that g{e')>e. Let

S— {d'\d'ED, dJÉd'\, eiED such that Ci>l (the constant 1 member
of D) and Ki a finite subset of S such that

EM(ei,e)|   -   Z\A{eue)\   <-f •
«es taKi 4

Suppose p is a positive integer and disjoint finite subsets K\, Kî,

• • ■ Kp of S have been chosen, along with elements e\, e2, ■ • • , ev of

D. Using the fact that if eED, then the net A{-, e) has limit 0; let

ßp+xED be such that

«j> < «p+i, £        I ¿(«jH-i» e) |   < —-,        and   g{e¡+i) > t.
p 4

Let Kp+i be a finite subset of S such that Kp+ifWJi.i Ki = 0 and
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£ I A(e^i,e) | -   22   I Mtp+u «) |  < —
«es «eKp+, 4

Define the member/ of C as follows: if eED, then

/(e) = | A(e„, e) | /¿(c, e)       ii e E Kn   and    ^4(e„, e) ^ 0,

= 0,        otherwise.

If p is a positive integer, then

\im^A(ep,e')f(e') =   E   Mfe,e')| -    E    U(«„0|
<'£K,

= E M(«p,«')I -2 E  M(«p,«o|
e'eS e'eS-X,

> e - i/2 = e/2.

Since the sequence e is cofinal in D, we see that A (/) does not have

limit 0. This contradiction establishes Theorem 4.
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