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1. Summary. In general the notation and terminology are as in [l ].

We assume the following throughout. All fields are inversive differ-

ence fields of characteristic zero. If A7 is a difference field then Cn is

the subfield of N of constants, (solutions to yi =y). M is the field ob-

tained from a field k by adjoining a fundamental system a

= (a(l), • • • , a(n)) for a linear homogeneous difference equation of

effective order n in k {y}. K is the algebraic closure in M of k (Cm) and

G is the transformal Galois group of M over K. Lisa difference sub-

field of M containing K, and D is the transformal Galois group of P

over K.

A partial Galois correspondence for M as an extension of K can be

deduced from [2, Theorem 4] and [3, Theorem]. In this note the

correspondence is completed by showing that a connected normal

subgroup H oí G corresponds to a relatively closed intermediate field

P which is normal over K, and conversely. Further, when this situa-

tion exists, G/H is dense, in a natural topology, in D. An example is

given where G/H is not naturally isomorphic to all of D.

Topological statements will refer to the Zariski topology on alge-

braic sets and to the topology it induces on factor groups of algebraic

matrix groups.

Some familiarity with [2, p. 491-499] will be assumed.

2. Universal extensions. N is a universal extension of M for L if N

is a difference overfield of M and every difference automorphism of

P over K can be extended to a difference isomorphism of M into N.

Example 4.2 below shows that even if P is itself a solution field over

K, M need not be a universal extension for P.

Proposition 2.1. If L is relatively closed in M then universal exten-

sions of M for L exist.

Proof. To avoid set-theoretic difficulties in the application of

Zorn's Lemma we choose an algebraically closed field U so that the

transcendence degree of U over M is the second infinite cardinal

greater than the cardinal of P. Contrary to our usual convention we

do not assume that U is a difference field. Consider the set of pairs

(D', N') with the following properties. (1) D'QD. (2) N' is a differ-
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ence overfield of M and the underlying algebraic field of N' is con-

tained in U. (3) Each SED' extends to a difference isomorphism S of

M into N' and N' is generated over M by the images S(M).

If the pairs are ordered by inclusion then the set is clearly induc-

tive. If (TJ)*, N) is a maximal element and TED then T is a difference

isomorphism of L into N. Since L is relatively closed in M, T extends

to a difference isomorphism of M into a difference overfield N' of N

[l, Chapter 9, Theorem l].

Since M is finitely generated over L, the transcendence degree of

N over M is at most the first infinite cardinal greater than the cardi-

nal of D. Therefore N' can be chosen so that the underlying algebraic

field of N' is a subset of U. Then, since (D*, N) is maximal, TED*,

D* = D and A is a universal extension of M for L.

3. Isomorphism groups. If A is a fixed difference overfield of M

then It, will denote the set of difference isomorphisms of M into N

leaving L fixed. Ik will be denoted by 7.

Proposition 3.1. If L is relatively closed in M then IL is a connected

algebraic matrix group. The Galois group Gl of M over L is dense in It..

Proof. Let P be the set of all polynomials in Ck [*],* = (xlt,i)), i, j

= 1, • • -, «, which vanish on the matrices of the elements of the

Galois group Gl- Then P is a prime ideal of dimension t.d.(M, L), and

Il is in one to one correspondence with the set of nonsingular solu-

tions to P in CN [2, Theorems 1 and 2] and [3, p. 549]. If C* is the

algebraic closure of Ck then the ideal U generated by P in C*[x] is

prime [3, p. 549-550, U = S*]. Therefore the ideal generated by P in

(C*C\Cm) [x] is prime. Finally, the ideal generated by P in Cjv[x] is

prime [l, Introduction, Theorem 23],

Let Q be the set of all polynomials in Cat[x] which vanish on II-

Each FEQ can be written in the form ^,ViFlfí where Fií)ECk[x]

and Vi is a vector space basis of Cn over Ck. Since F is zero for each

matrix of an element in Gl the same is true for each F(i). Therefore

F(i)EP, Q is the ideal generated by P in Cn[x] and Q is prime. Since

dim GL = dim IL, Gl is dense in IL.

To complete the proof it is sufficient to show that II is a group

under an operation corresponding to the multiplication of associated

matrices.

If SEIl then, since L(Cn) and M are linearly disjoint over L,

[2, Proposition l], S extends uniquely to a difference isomorphism S

of M(Ctf) over L(CN). Since S(a^)EM(Ctf) for each/, S maps M(CN)

intoitself. If the matrix of S is (c,y), then the equations S(a(i)) = 2c»va(,)
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can be solved for the ali) as a linear combination of the S(aa)) with

coefficients in Cn- Therefore 3 is a difference automorphism of M(Cn).

We define the product of S, TQIL as the composition ST, and the

group inverse of S as the restriction of S-1 to M. Under these opera-

tions IL is a group isomorphic to the set of matrices corresponding

to the elements of II and the proof is complete.

Corollary 3.2. Il is isomorphic to the Galois group G* of M(Cn)

over L(Cn).

Proof. Il and G* are each isomorphic to the same group of ma-

trices.

4. The Galois correspondence. The notation is as above with

primes denoting the Galois correspondence.

Theorem 4.1. Assume that H is an algebraic subgroup of G and that

L is an intermediate field.

(1) H"=H.
(2) If L is relatively closed then L" = P, and M is normal over P.

(3) There is a one to one correspondence between connected algebraic

subgroups H of G and relatively closed intermediate fields P.

In (4) and (5) assume that H is a connected algebraic subgroup of G and

L = H'.
(4) H is normal in G if and only if L is normal over K.

(5) Assume that H is normal in G and that D is the Galois group of

L over K. If N is any universal extension for L then II is normal in I.

The homomorphisms defined by restriction and extension determine

natural isomorphisms G/H—*D—*I/Il and the image of G/H is dense

in I/II-

Proof. Since M is normal over any relatively closed intermediate

field [3, Theorem], the first three assertions follow from [2, Theorem

4].
Assume that H is connected and normal in G. To show that P is

normal over K it is sufficient to show that P is stable under G. If xGP

and TQG then for each SQH, T~1STQH. Therefore STx = Tx and

PxGP.
Assume that P is normal over K. Choose N a universal extension

of M for P. Let J be the normalizer of IL in I. J is an algebraic matrix

group [4, Lemma 4.10]. If xQM—L then, since M is normal over L

there is an SQHQJ with 5(x) 9*x. If xQL—K then there is an SQD

with S(x) 9*x. S extends to an ~5QI. If TQIL and yQL then TSy = Sy
so 5GP Combining the above we find that the subset of M left fixed
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by J is K. By Corollary 3.2 J is isomorphic to an algebraic subgroup

J* of G*, the Galois group of M(Cn) over K(Cn). Since M and K(Cn)

are linearly disjoint over K the fixed field of J* is K(Cn). Therefore

J*=G*, J = I and 7¿ is normal in 7.

The mapping of G into 7/7¿ defined by 5—>57¿ is clearly a homo-

morphism whose kernel is L' =77. Therefore 77 is normal in G and the

proof of (4) is complete.

If 77 is normal in G and N is any universal extension for L then,

since L is stable under G, the restriction mapping is a homomorphism

of G into D. The kernel is 77, and G/77 is isomorphic to the subgroup

of D of elements which have an extension to automorphisms of M.

The mapping of D into 7/7¿ defined by S—>SIl where S is any

extension of 5 to an element of 7 is clearly well defined and an

isomorphism.

The composition of these isomorphisms takes 577 to SIl. A non-

null open set in I/Il is of the form { 77/, 7"E^4 } where A is a nonnull

open set in 7. By Proposition 3.1 G is dense in 7 and A contains a

point of G. Therefore the image of G/77 is dense in 7/7¿ and the proof

is complete.

The following example shows that even if the original ground field

has an algebraically closed field of constants it need not be the case

that each automorphism of L extends to an automorphism of M.

This shows that the restriction mapping need not take G onto D. In

this example L is itself a solution field over K and D is an algebraic

matrix group.

Example 4.2. Let k = C(z) where C is the complex numbers and z

is transcendental over C. We consider the classical transform which

is the identity on C and takes z to z+1. Assume that M is a generic

solution field [2, Proposition 4] for y2 = zy with fundamental system

(a, b). Set j = a/b, e=jji, and f=j+ji. Then, [2, Lemmas 1 and 2,

p. 511], K = k{j), CK = C(e,f) where e and /are algebraically indepen-

dent over C, and for each automorphism T of M over K there exist

x, y E Ck with

Ta = xa — yeb = (x — y/i)a.

If L = K(aai) then Z, is a solution field over K for yi = zy. Therefore

D is the full multiplicative subgroup of Ck [2, Proposition 6]. Thus

there is an SED with S(aai) =/aoi. If there were a TEG with T(aa{)

=faai there would be x, yECK with x2—xyf+y2e=f. The proof can

now be completed by the following lemma.

Lemma 4.3.  Assume that s and t are algebraically independent
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over the complex numbers C. There do not exist x, yQC(s, t) with

x2—xys-\-y2t = s.

Proof. Assuming such x and y exist, set w=x—ys/2, A = f—ss/4.

Then w2+Ay2 = s. Write w = a/b, y = c/d where a, b, c, dQC [s, t] and

(a, b) = (c, d) = l. From a2d2+Ac2b2 = sb2d2, we obtain b2\d2 and

d2\ Ab2. Since A is irreducible one may multiply both c and d by the

same constant to obtain d2 = b2 or d2 = Ab2. In the second case A

= (d/b)2 is a contradiction. If d2 = b2 then a2+Ac2 = sb2. If c(0, t)9*0

then ,4(0, t) =t=(ia(0, t)/c(0, t))2 a contradiction. If c(0, /) =0 then

a(0, t) =0. Since s\ a and s\ c, s\ b2. Therefore s\ (a, b), the final contra-

diction.
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