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1. Introduction. A topological space X is said to be a completely

Hausdorff space (or a Stone space) provided that C(X), the set of

bounded continuous real valued functions defined on X, is point

separating. In the following we call a completely Hausdorff space X

an SW space if every point separating subalgebra of C(X) which

contains the constants is uniformly dense in C(X). Equivalently,

according to Theorem 1, one can define a topological space to be an

SW space provided that it can be obtained from a compact Hausdorff

space by refining the topology without adding any continuous real

valued functions.

In [5] the author proved that if X and Y are SW spaces, one of

which is compact, then XX Y is an SW space. In this note a proof is

given that if X and Y are SW spaces, then XX Y is an SW space if

and only if pn is Z-closed, i.e. for every zero set Z of XX Y, pn(Z)

is a closed subset of X. Several consequences of this theorem are

considered, and some examples are given of noncompact spaces to

which it applies.

We use the same terminology as that in [2] or [3]. Given a com-

pletely Hausdorff space X, we shall denote by wX the completely

regular space which has the same point6 and the same continuous

real valued functions as those of X. L(X) will denote the set of all

functions in C(X) which map X into [O, l].

A filter base on a space X is called an open filter base if the sets

belonging to it are open subsets of X. An open filter base ff is said to

be completely regular if for each set FES there exist a set GGï and

a function fEL(X) such that/vanishes on G and equals 1 on X — F.

$ is said to be fixed if [\5t¿0.
Our proofs are all based on the following characterization theorem

[1].

Theorem 1  (Banaschewski). Let X be a completely Hausdorff

space. The following are equivalent.

(i) X is an SW space.

(ii) wX is compact.

(iii) Every completely regular filter base on X is fixed.
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The author wishes to express his appreciation to the referee for

several suggestions and, in particular, for Lemmas 2 and 3 which are

substantial generalizations of the author's original results.

2. A characterization theorem for products.

Lemma 2. Lettb: X-* Y be a Z-closed open mapping from the space X

onto the space Y. Then, for any fEL{X), the function g, defined by

g{y) =inl{f{x)\<p{x)=y\, belongs to L{Y).

Proof. One readily checks that for any s<t,

rKs, t) - U F - <b{f-i[o, x]) n «(/-'[o, o),

and it follows from the given properties of <p that this set is open.

Lemma 3. If X is a completely Hausdorff space, Y an SW space, and

<b : X—* Y a Z-closed open surjection such that each #-1 {y}, yEY, is an

SW space, then X is also an SW space.

Proof. Let ÍF be a completely regular filter base on X. Using

Lemma 2, one can show that <p{tf) is a completely regular filter base

on Y. Then there exists aEfk/KiF) and for -4=$-1{a} a point

bEAr\{C\3), the latter since the restriction of Î to A is a completely

regular filter base on A.

Theorem 4. Let X and Y be SW spaces. The following are equivalent.

(i) pri is Z-closed.

(ii) XX Y is an SW space.

(iii) w{XXY)=wXXwY.

Proof, (i) implies (ii). Since {/opri|t = l and/£C(.X), or t = 2

and/£C(F)} is a point separating subset of C{XX Y), C{XX Y) is

point separating and XX Y is a completely Hausdorff space. By

Lemma 3, X X Y is an SW space.

(ii) implies (iii). If XX Y is an SW space, then w{XX Y) is compact

by Theorem 1. Since wXXwY is a Hausdorff space and the identity

mapping i: w{XX Y)—>wXXwY is a continuous bijection, t is a

homeomorphism.

(iii) implies (i). (iii) implies that C{XXY)~C{w{XXY))
= C{wXXwY). Thus IX Y and wXXwY have the same zero sets.

Since pri: wXXwY—*wX is a closed mapping, and the closed subsets

of wX are closed subsets of X, (i) holds.

Remark 5. (i) of Theorem 4 holds if and only if pri is zero set

preserving. More generally, one can use Lemma 2 to prove that if

tp: X—*Y is an open surjection for which all ^-1{y} are pseudocom-
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pact, then the following are equivalent: 4> is Z-closed; <b is zero set

preserving; g EL(Y) for each fEL(X), where g is defined as in Lemma

2.

3. Applications and examples. Since for any space X and compact

space Y, pn: XX Y-+X is a closed mapping, an immediate corollary

to Theorem 4 is that the product of two SW spaces, one of which is

compact, is an SW space. Similarly one sees that the following holds.

Theorem 6. Let X and Y be SW spaces. Then XXYis an SW space

if and only if the identity mapping ofXXY onto XXwYis Z-closed.

In [ó] Tamaño proves that if X and Y are pseudocompact com-

pletely regular spaces and X is a ¿-space, then pri:XXY—>X is

Z-closed. The next theorem can be obtained from an obvious modifi-

cation of his proof.

Theorem 7. If X and Y are SW spaces, one of which is a k-space,

then XX Y is an SW space.

In [2] a Hausdorff space X is said to be absolutely closed provided

that for every Hausdorff space Y and continuous mapping/: X—*Y,

f(X) is a closed subset of Y. It is noted in [2] that a Hausdorff space

X is absolutely closed if and only if every open filter base on X has

an adherent point. We shall call a completely Hausdorff space X

weakly absolutely closed if X has the following property: every open

filter base on wX has an adherent point in X.

Lemma 8. 7,ei X be a topological space, and let Y be a weakly abso-

lutely closed space. IffEL(XX Y), a>0, and A =/~l[0, a), then pri(.4)

is a closed subset of X.

Proof. Let x0E[pri(A)]~. Then for every neighborhood V of Xo,

(VX Y)C\A and, consequently, (VX Y)C\A are nonempty, so there

is a point XvEpr\((VX Y)C\A). Let V be the set of all neighborhoods

of xo, and for each VEV denote U {f(xw, ■ )_1 [0, a) WC V and WEV}

by Oy Since Y is weakly absolutely closed, \0v F£l)} has an ad-

herent point yo in Y. Thus (*o> ya)EA and xoEpri(A~).

Theorem 9. If X is an SW space and Y is a weakly absolutely closed

space, then XX Y is an SW space.

Proof. Since for a completely regular filter base $, Hî = D {F\ FE$}

= the adherence of $, a weakly absolutely closed space is an SW

space. Thus X and Y are SW spaces.

Let fEL(XXY), Z=f~^{0}, and for each a>0 denote/-^[O, a)
by Ca. The set D = f) {pri(C„) | a > 0} is closed by Lemma 8. Further-
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more, if x0ED, then, by pseudocompactness, there must be a point

y a at which/(x0, ■) vanishes. Thus pri(Z) =D is a closed subset of X.

Therefore, XX F is an SW space by (i) of Theorem 4.

Example 10. Clearly, an absolutely closed completely Hausdorff

space is weakly absolutely closed. Thus if X is any SW space, and Y

is an absolutely closed completely Hausdorff space, IX Y is an SW

space. For examples of absolutely closed completely Hausdorff spaces

which are not countably compact, see [l], [2], and [4]. In [5] a

space is constructed which is a countably compact, noncompact,

absolutely closed completely Hausdorff space. We now describe it in

order to show that there exists a weakly absolutely closed space which

is not a ¿-space.

Let Y be the "long interval," 0 the last point of Y, 0 the order

topology on Y, and 3 the topology on Y which is generated by

eW{ Y—L\L is the set of limit ordinals in F-{fi} }. The set C

= Y— \iï} is not a closed subset of {Y, 3), but it can be shown that

for every compact subset K of (F, 3), CC\K is compact.

It suffices to prove that if K is a compact subset of (F, 3) which

contains ñ, then ti is not a limit point of {K, 3\K). Since Y—L£3

and K is compact, {LC\K, ^LCsK) is compact. Since the identity

mapping t: (F, 3)—>(F, 0) is continuous, it must also be true that

L(~\K is a compact subset of (F—{ß}, e| F— {O}). Therefore,

sup LC\K<Ü. Appealing now to the countable compactness of

{K, 3\K), one can conclude that sup K— {O.) <fi, for if sup K— |ß]

were equal to Ü, then one could find an increasing sequence \xn\ in

K— \ti) such that sup Li\K<sup{x„} EL.

Example 11. In [5] (see also [4, Example 2]) it is noted that

Tychonoff's regular but not completely regular space is an SW space.

One can also prove that this space—call it X—is a ¿-space, because

each of its points either has a compact neighborhood or a countable

fundamental system of neighborhoods. According to Theorem 7,

X X Y is an SW space for every SW space F. X is not weakly abso-

lutely closed, for if R is a Tychonoff plank in X and ff is the set of

open rectangles in the upper right hand corner of R, $ has no adherent

points.

Example 12. Let X= [0, l], let 3 = the usual topology on X, and

choose disjoint dense subsets X{1), X{2), X{3) of {X, 3) such that

X = X{l)*UX{2)UX{3). Let V be the topology on X generated by

3U{Z(1), X{2)).
In [4] Herrlich notes that (X, V) is a Urysohn-closed space which

is not absolutely closed. One can also prove that {X, V) is weakly

absolutely closed.
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