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1. Introduction. Let {p(n)} "_0 be a sequence of positive numbers,

one defines an infinite matrix p(x, y) (x, y)ENX TV as follows:

P(Q, y) = 8(0, y),      p(l,y) = p(y);

the other lines of the matrix are such that

p(x + 1, y) =   E ¿(i> yùp(*, y*)-
»î+i/s—y

We will say that the matrix p(x, y) is the branching matrix corre-

sponding to the sequence {p(n)} "_„. When E»=o P(n) = 1>the matrix

is stochastic and describes a Markov process which is called a branch-

ing process.

We would like to get information about the positive harmonic

functions h(x):

EM y)h(y) = h(x),       h(x)^0.
y

We will see that there is a one-to-one linear correspondence be-

tween these harmonic functions and those of a second triangular

branching matrix. From that, it follows that there can be only one

extreme harmonic function equal to 1 at x = 0. This function when-

ever it exists is an exponential function. We will be able to describe

all the harmonic functions only when y.r.n t>(n) = y„r_n np(n) = 1.

This case has been already solved by Kesten, Ney and Spitzer [l ].

2. Functional meaning of harmonic functions. Let h(x) be a posi-

tive function defined on N and let p(x, y) be the branching matrix

corresponding to a sequence {p(n) }^_0 of positive numbers, let us

consider the cone of formal power series in a variable z with positive

coefficients. On this cone, we define the following functional:

B(g(z)) = E Kx)h(x)       if g(z) = ¿ b(x)f.
x— 0 x**0

If /(*) = E."-o />(»)*", we have that (/(«))*= Ev°°-o /»(*. y)**- Since
&0x0 =H(zx), h(x) is harmonic precisely when 77(zI) =H((f(z))z), thai

is to say when H(g(z)) z=H(g(f(z))) for every power series g(z).
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3. Transformation of harmonic functions.

Theorem, (a) If there is no number a = 0 such that E»-o P(n)a"

converges to a, there is no harmonic function different from 0.

(b) If ais the smallest positive solution ofE»-o P(n)tni=t, if p'(0)=0

and

/>'(*) = E (m)p(i»)a~-       (»=D,
*=* \n/

and if p'(x, y) is the branching matrix corresponding to the sequence

{p'(n)}i there is a linear one-to-one correspondence between positive

harmonic functions of the matrix p(x, y) and those of the matrix p'(x, y).

Such a mapping is

h'(x) = E (*) (-a)—*(.),       h(x) = E (*) a"h'(v).

Proof. There is something to be proved only when p(0)9*0. Let

fK(z) be the functional product of the power series f(z) n times with

itself. Let us start with a harmonic function h(x) for the matrix

p(x, y). If g(z) = E"-o b(x)zx is a power series such that

E;.o I à(x) | h(x) < », we will set H(g(z)) = E,"-o b(x)h(x). Let « be
an integer and t be a number between 0 and /»(0), we set ht(x)

= H((z—t)x). Since/„(z) —t is a power series with positive coefficients,

we get that h,(x) = H((f%(z)-t)x) =0.

(a) If limn+Kfu(0) = », then for every t,

h,(x) = ÍL(X)(-t)*-*h(v)^0.

So for every x, h(x) =0.

(b) If lim„^/n(0) < », a = \imK^Kfn(0). We will set h'(x)

= H((z-a)*).

Since h'(x) =lim(Ta h¡(x), h'(x) =0. On the cone of power series in a

variable w (w—z — a) with positive coefficients, h'(x) defines a positive

functional H', where H'(wx) =h'(x).

H'((f(a + w)- a)*) = H((f(z) - a)*) = H((z - a)x) = H^w1).

Since f(a+w) —/(c) = E»-o P'(n)w%, h'(x) is a harmonic function for

the matrix p'(x, y).

Conversely, if h'(x) is a positive harmonic function for the matrix

p'(x, y) and if H' is the corresponding functional on the power series

in w, we set h(x) = H'((a 4- w)x). From the change of variable

w —*f(a + w) — a, which leaves H' unchanged, we get that h(x)

— H'((f(a+w))x). So h(x) is also a harmonic function and
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AO) = £,(X)a^>h'(v).
v-o\v/

4. Applications. Let us remark that the matrix p'(x, y) is triangu-

lar: if y < x, p'(x, y) = 0. On the diagonal p'(x, x) = ßz where

ß= E" mp(m)am~x. ß is the derivative of f(z) at z = a, so ß^l. Ii

h'(x) is an extreme function such that h'(0) = 1, since 5(0, x) is har-

monic and from the fact that h'(x) = [h'(x) — 5(0, ^)] + 5(0, x) is the

sum of two positive harmonic functions, then h'(x)=5(0, x). The

corresponding harmonic function h(x) is ax. This exponential is the

only extreme harmonic function taking the value 1 at x — 0 for the

matrix p(x, y). This last fact could have been proven directly. Let

us sketch two other proofs for that.

Let h(x) be an extreme harmonic function for p(x, y) such that

Ä(0) = 1.
(a) Let n(x) = min {h(yi)h(y2) ■ ■ • h(yx)\yi+yi+ ' ■ • +y*=x} ;

we will check that h(x) is a superharmonic function. Let W\, Wi, • ■ • ,

wx be x nonnegative integers whose sum is x, then

E />(*> y)Ky)

= E       P(WU Zl)P(w2> zi)  ■  ■  • P(w*> Zz)h"(Zl + Z2 +   •  •  •  + Zi)
*1,*2.- • -.íj

S       E     P(wi, Zi) • • • P(wx, zx)h(zi) ■ ■ ■ h(zx)
*1.*2. • • -.Zx

á h(wi)h(w2) • ■ • h(wz).

Hence E» P(x> y)k(y)úh"(x).
Using the Riesz decomposition theorem for superharmonic function

and noticing that in our case there is no potential U(x) such that

Í7(0) = 1, we get that h(x) is harmonic and is equal to h(x).

(b) 5(0, x) is a subharmonic function which is smaller than h(x), so

h(x)=\imn^x E"-o£»(*. y)à(°> y)=limn^w (fn(0))x where pn(x, y) is

the branching process corresponding to the power series fn(z).

If ju = 1 and if h'(x) is a harmonic function such that h'(l) =0, one

can check easily that h'(x) =0 if x >0. So the only positive harmonic

functions are in that case .45(0, x)+B5(\, x) where .4 2;0, 73^0.
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