POSITIVE HARMONIC FUNCTIONS OF A
BRANCHING PROCESS

SERGE DUBUC

1. Introduction. Let {p(n)}., be a sequence of positive numbers,
one defines an infinite matrix p(x, y) (x, ¥) € NX N as follows:

20,y =8(0,y), p1,y = p04);

the other lines of the matrix are such that

plr+1,9) = 20 p(1, 30p(x, 3.
y1+yg=y

We will say that the matrix p(x, y) is the branching matrix corre-
sponding to the sequence {p (%) };o. When .o p(n) =1, the matrix
is stochastic and describes a Markov process which is called a branch-
ing process.

We would like to get information about the positive harmonic
functions k(x):

2 p(x, () = k), h(x) 2 0.
vy
We will see that there is a one-to-one linear correspondence be-

tween these harmonic functions and those of a second triangular
branching matrix. From that, it follows that there can be only one
extreme harmonic function equal to 1 at x=0. This function when-
ever it exists is an exponential function. We will be able to describe
all the harmonic functions only when Y oo p(n)= D v onp(n)=1.
This case has been already solved by Kesten, Ney and Spitzer [1].

2. Functional meaning of harmonic functions. Let A(x) be a posi-
tive function defined on N and let p(x, y) be the branching matrix
corresponding to a sequence {p(n)};., of positive numbers, let us
consider the cone of formal power series in a variable 2z with positive
coefficients. On this cone, we define the following functional:

Hg@) = 3 0@hx) i g(d) = 3 b(x)se
If f(z)= > w0 p(n)z", we have that (f(z))*= D ,oq p(x, ¥)2¥. Since

h(x) =H(2%), h(x) is harmonic precisely when H(z*) = H((f(2))*), that
is to say when H(g(z)) = H(g(f(2))) for every power series g(z).
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3. Transformation of harmonic functions.

THEOREM. (a) If there is no number a =0 such that ) m o p(n)a”
converges to a, there is no harmonic function different from 0.

(b) If ais the smallest positive solution of 3_w o p(m)tr=t, if $'(0) =0
and

0

m
o = = (") pme— @z,
and if p’(x, y) is the branching matrix corresponding to the sequence
{ p'(n)}, there is a linear one-to-ome correspondence belween positive
harmonic functions of the matrix p(x, y) and those of the matrix p'(x, y).
Such a mapping is

z x x
H(x) = }_‘,(x) (—0)h(x),  h(z) = E( )a""h’(v).
v=0 \ 7 w0 \7

Proor. There is something to be proved only when p(0) 0. Let
fx(2) be the functional product of the power series f(z) # times with
itself. Let us start with a harmonic function k(x) for the matrix
p(x, y). If g& = D.nob(x)s* is a power series such that
e |b(x)lh(x) < o, we will set H(g(z)) = s b(x)h(x). Let n be
an integer and ¢ be a number between 0 and f.(0), we set h,(x)
= H((z—1t)?). Since f,(2) —t is a power series with positive coefficients,
we get that k,(x) = H((fa(2) —1)*) 20.

(a) If lim,., fa(0) = «, then for every ¢,

z

() = Z(*)(_,)M,,(,,) 20,
=0

So for every x, h(x) =0.

(b) If limuya, fa(0) < 0, @ = lima., f2(0). We will set A'(x)
=H((z—a)?).

Since &'(x) =lim1q h(x), B'(x) 2 0. On the cone of power series in a
variable w (w =2z —a) with positive coefficients, k’(x) defines a positive
functional H’, where H'(w*) =h'(x).

H((fa + ») — 0)) = H({(f(2) — 0)*) = H((z — 0)*) = H'(v").

Since f(a+w) —f(a) = Y_mq p' (n)w*, ¥ (x) is a harmonic function for
the matrix p’(x, ¥).

Conversely, if #’(x) is a positive harmonic function for the matrix
p'(x, ) and if H’ is the corresponding functional on the power series
in w, we set h(x) = H'((a + w)*). From the change of variable
w — f(a + w) — a, which leaves H’ unchanged, we get that k(x)
=H'((f(a+w))%). So k(x) is also a harmonic function and
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Wz) = 3 (x) K (1),
o0 \V

4. Applications. Let us remark that the matrix '(x, y) is triangu-
lar: if y <x, p’(x, ¥) = 0. On the diagonal p’(x, x) = u* where
p= 2.2 mp(m)am1. u is the derivative of f(3) at z=a, so u<1. If
k' (x) is an extreme function such that 4’(0) =1, since §(0, x) is har-
monic and from the fact that 4'(x) = [#'(x) — (0, x)]+8(0, x) is the
sum of two positive harmonic functions, then h’(x) =68(0, x). The
corresponding harmonic function k(x) is a®. This exponential is the
only extreme harmonic function taking the value 1 at x=0 for the
matrix p(x, ¥). This last fact could have been proven directly. Let
us sketch two other proofs for that.

Let h(x) be an extreme harmonic function for p(x, ) such that
h(0)=1.

(a) Let h(x)=min {h(y)h(y2) - - - h(¥2)|y+y+ - - - +y.=x};
we will check that %(x) is a superharmonic function. Let wy, we, - - -,
w, be x nonnegative integers whose sum is x, then

2 p(x 9)A(G)
= 2 ey z)p(we, 2) - - - plws, 2+ 20+ - - -+ 2)
< X plwn ) - p(ws, 2)h(z) - - - h(z)

= h(w)h(ws) - - - h(ws).
Hence Y, p(x, 9)k(y) S k(x).

Using the Riesz decomposition theorem for superharmonic function
and noticing that in our case there is no potential U(x) such that
U(0) =1, we get that k(x) is harmonic and is equal to k(x).

(b) 6(0, x) is a subharmonic function which is smaller than k(x), so
B(x) =liMaaw 250 Pa(x, 3)8(0, 3) =limp.,, (fa(0))* Where pa(x, ¥) is
the branching process corresponding to the power series f.(2).

If u=1 and if k'(x) is a harmonic function such that #'(1) =0, one
can check easily that h’'(x) =0 if x>0. So the only positive harmonic
functions are in that case 46(0, x)+B46(1, x) where 420, B=0.
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