CORRECTION TO "AN APPLICATION OF GRAPH THEORY TO ALGEBRA"

RICHARD G. SWAN

Mr. L. H. Harper recently pointed out to me that the proof in [1] is not complete. The argument given in Cases 2 and 3 is only valid if $P \neq A$ or B. The purpose of this note is to supply the missing details. We use the notation of [1] and assume all the hypotheses of [1, §5].

Lemma. Suppose Γ has a vertex X of order 2 such that the two edges e and e^{\prime} meeting X join P to X and X to P respectively. Then the theorem is true for Γ.

Proof. Let Γ^{\prime} be the result of deleting e, e^{\prime}, and X. The theorem holds for Γ^{\prime} by induction. Any unicursal path on Γ^{\prime} has the form $\pi_{1} \pi_{2} \cdots \pi_{n}$ where each π_{i} is a path starting and ending at P but not meeting P between. Clearly n is the number of edges leaving P in Γ^{\prime} and so is the same for all paths. Let λ be the path $e e^{\prime}$ from P to P in Γ. We get all possible unicursal paths on Γ by starting with such paths on Γ^{\prime} and inserting λ, getting $\lambda \pi_{1} \cdots \pi_{n}, \pi_{1} \lambda \cdots \pi_{n}, \cdots$, $\pi_{1} \cdots \pi_{n} \lambda$. Assuming that e, e^{\prime} are the last two edges in the chosen ordering of the edges, we have $\epsilon\left(\pi_{1} \cdots \pi_{i} \lambda \pi_{i+1} \cdots \pi_{n}\right)=\epsilon\left(\pi_{1} \cdots \pi_{n}\right)$. Thus $\sum \epsilon(\pi)=(n+1) \sum \epsilon\left(\pi^{\prime}\right)=0$, the first sum being over all unicursal paths on Γ and the second over such paths on Γ^{\prime}.

We now consider Case 2 of [1]. If $P=A$, we can repeat the argument of Case 2 using B and C in place of B and A with only minor modifications. This will be possible provided $C \neq A$, but if $C=A$, the lemma applies with $X=B$. Suppose now that $P=B$. Let U be the set of unicursal paths on Γ starting at A, U^{\prime} the set of such paths which begin with e, and U_{i} the set of unicursal paths on Γ_{i} starting at A. Then the argument of [1, Case 2] shows that $U=U^{\prime} \cup \cup U_{i}$, a disjoint union. Since the theorem holds for U by what we have just proved, and also for U_{i}, we see that $\sum \epsilon\left(\pi^{\prime}\right)=0$ where π^{\prime} runs over all elements of U^{\prime}. But there is a one-to-one correspondence between U^{\prime} and the set of unicursal paths starting from B, given by $e e^{\prime} e_{1} \cdots e_{n}$ $\leftrightarrow e^{\prime} e_{1} \cdots e_{n} e$. Since $n=E-2$ is even, $\epsilon\left(e e^{\prime} e_{1} \cdots e_{n}\right)=-\epsilon\left(e^{\prime} \cdots e_{n} e\right)$. Therefore the theorem holds in this case also.

Finally, we consider Case 3. If there is an edge not meeting P, choose it for e_{4}. Then $P \neq A, B$ and we are done. Suppose every edge meets P. Let P, A_{1}, \cdots, A_{n} be the vertices. Then $E=2 V=2 n+2$.

Received by the editors July 30, 1968.

Each A_{i} must be joined to P by at least two edges. This uses up all but two edges which must either be loops from P to P, or must both join P to some A_{i}. In this case, the lemma clearly applies except in the trivial cases $V=1$ or 2 .

There is also a misprint in Figure 9 of [1]. This figure should contain an additional edge labelled e_{3} with A as initial point.

Reference

1. R. G. Swan, An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963), 367-373.

University of Chicago

