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Introduction. The recent interest in the structure of programming

languages has led to the study of their mathematical properties.

Characterizations of bounded context-free languages (also called

bounded ALGOL-like languages) [l] and bounded regular sets [3]

have been given in terms of certain semilinear subsets of Nn. Semi-

linear sets have been extensively studied as subsets of lattice points

in «-space which are finite unions of cosets of finitely generated sub-

semigroups of the set of all lattice points with nonnegative coordi-

nates and which are also shown to be equivalent to the family of sets

defined by modified Presburger formulas [2]. In this note we give a

characterization and discuss decision procedures for semilinear sets

of words (hereafter called semilinear sets) [4] which include bounded

context-free languages and hence bounded regular sets.

1. Preliminaries. Let S be a finite nonempty set and 2* the free

semigroup with identity e generated by 2. A subset X oí 2* is said

to be bounded if there exist words Wi, ■ ■ ■ , wk in 2* such that X

Ça;, • • • wt. For each ¿-tuple of words w = (wi, ■ • • , wk) let /„

denote the function defined on Nk by fw(p)=ivpi) ■ • • wl{t) where

P — (P(l)> ' " * . P(k)) is in Nk. Then MÇ^Wi • • • wt is said to be semi-

linear in wii w = (wi, • • • , wk) and fw~1(M) is a semilinear subset of

Nk. A set M is called semilinear if it is semilinear in some ¿-tuple

(wx, ■ • ■ ,wk) [4].

An equal matrix grammar (abbreviated EMG) of order k [5] is a

4-tuple G = (V, 2, £, S) where (i) F consists of the alphabet 2, the

initial symbol S, and the rest of the nonterminals Vn in the form of

ordered ¿-tuples (A\, • • • , Ak) where the ¿-tuples are distinct, ¿

being finite. In other words ii (Au ■ • ■ , Ak) and (£i, • • • , Bk) are

any two ¿-tuples, ^4i, • • ■ , Ak, Bx, ■ ■ ■ , Bk are distinct, (ii) £ con-

sists of the following types of matrix rules:

(a) A set of initial matrix rules (abbreviated initial rules) of the

form [S—rfiAi ■ ■ • fkAk] where fi, • ■ ■ , fk are in 2*, 5 the initial

symbol and (Ait • • • , Ak) in Vn- (Note that S^>fiAi • ■ • fkAk is a

context-free rule.)

(b) A set of nonterminal equal matrix rules (abbreviated nontermi-

nal rules) of the form
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rAi-^fiA, -Ai^fiBi-
or

LAk-^fkAk. ' fkBk

where/i, • • • , fk are in 2* and (Ai, • • • , Ak), (Bu ■ ■ ■ , Bk) in VN.

(c) A set of  terminal equal matrix rules  (abbreviated  terminal

rules) of the form

Ai ->/i

h -» /J

where /i, • • • , /* are in 2*, (A, • • • , ^4*) in VN. An egt<a/ matrix

grammar is an EMG of any finite order.

Notation. Let G = (F, 2, P, S) he an EMG. We write S=>/i,4i

• • ■ fkAk if [S^fiAi • • • fkAk] is an initial rule in P, and Wi=$w2 if

Wi=XiAi • • • xkAk, w2 = XiVi ■ ■ ■ XkVk, Xi in 2*, (Au ■ ■ ■ , Ak) in VN

and

Ai

Uj

»i

v*J

is in P. We write w=>y if either w = y or there exist w>o=w, Wi, • • • ,

wn = y such that w¿=i>w,+i for each i. A sequence of words w0, • • • ,wn

such that Wi=$Wi+i for each i, is called a derivation or generation of wn

(from Wo) and is denoted by Wo^ • • • =>w„. LÇZ2* is an equal matrix

language (abbreviated EML) if there is an EMG G = (V, 2, P, S)

such thatT, = L(G) where L(G) = {w in Z*/.S=>w}. i(G) is said to be

the language generated by G.

2. Characterization. We now present a characterization of semi-

linear sets, which is related to Theorem 2.1 of [l] and Theorem 1.3

of [3].

Theorem 2.1. XÇ2* is semilinear if and only if X is a bounded

EML.

Proof. Let X he semilinear. Then there is a w = (wi, • • • , wk) such

that X is semilinear in w, i.e. L= {(i(l), • • • , i(k))/w\m ■ • ■ wtit}

in X} is a semilinear subset of Nk. Let ai, • • ■ , ak he k distinct sym-

bols not in 2 and h the homomorphism which maps each a¿ into Wi.

Then by Theorem 2.2 of [S], Y> „«i> i(t) /„,<(!)aTH w,,«*)  :in x\
is an EML. By the corollary to Theorem 3.2 of [ó] homomorphism

preserves EML. Hence X is a bounded EML.
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Now suppose X be a bounded EML. Y = h~1(X)r\a* ■ ■ ■ a*. By

the corollary to Theorem 3.5 of [ó] inverse homomorphism preserves

EML and by Theorem 3.1 of [6] the intersection of an EML and a

regular set is an EML. Hence F is an EML since Oj ■ ■ ■ ak is regular.

Again by Theorem 2.1 of [5], £ is a semilinear subset of Nk. Thus X

is semilinear.

Therefore the class of bounded EML is equivalent to the class of

semilinear sets and includes the bounded context-free languages and

hence the bounded regular sets.

Notation. Let Z be a bounded set Cxf • • • x*, i.e. every z in Z is

of the form x\a) ■ ■ ■ x[*\ xu ■ • • , xk being words in 2*. Then we

write Z(yi, • ■ • , y*)* = U¿í0 zxy\z2y2 ■ ■ ■ zky\ where yi, • ■ • , yk are

words inx*, • • • ,xk respectively, and z1=xi1(1>, z2 = x2<2>, • • • ,zk = xi*)

where z = Zi • • • Zk=xi1m ■ ■ ■ xk{t) is in Z. Inductively we write

Z(yxx, • ■ • , ykx) ■ ■ ■ (yxn, ■ • • , ykn)*=Z(yn, • • • , ykl) ■ ■ •

(yxn-x, • • • , ykn-x)*(yxn, • • ■ , Vkn)* where yu, ■ • ■ , yxn are words in

**. • • • . Vki, ■ ■ ■ , yu are words in ¡c*.

Corollary 1. Let wi, • • ■ , wk be words in 2*. Each EMLQw*

• • ■ wt is the finite union of sets of the form

x(yu, ■ ■ •, ykx) • • ■ (yxn, • • •, ykn)*

where each yrm is inwr ,r = l, ■ ■ ■ , k ; m = 1, • • -, « and x = Xi ■ ■ • xk

where xr is in wr ; and conversely each finite union of sets of the above

form is an EMLQwt • ■ ■ wt.

Corollary 2. The family of bounded EML is the smallest family of
sets containing all finite sets and closed with respect to the following

operations:

(a) finite union,

(b) finite product,

(c) Z(xi, • • • , Xk)* where Xi, • • • , xk are words.

This is related to Theorem 3.1 of [l]. In view of Theorem 3.2 of

[4] we obtain the following

Corollary 3. 5(£) is a bounded EML for each bounded EML L

and each gsm S.

3. Decidability. In this section, we consider the problem of deter-

mining of an arbitrary EML whether or not it is semilinear. We shall

show that there is a decision procedure. Also another simple charac-

terization of semilinear sets is given.

Notation. For each EMG G of order ¿ and for each ¿-tuple of non-

terminals (^4i, • • • , Ak) let
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XAl(G) = [ui/ui in 2*, Ai • • ■ Ak=$uiAi • • • ukAk

for some u2, ■ ■ • , Uk in 2*},

Xa^(G) = jm2/w2 in 2*, Ai • ■ • Ak^>UiAx • • • ukAk

for some uu u3, ■ • • , uk in 2*},

XAk(G) = {uk/uk in 2*, 4i • • • Ak=>UiAi ■ • ■ ukAk

for some «i, • • • , wA_i in 2*}.

The results that follow are obtained by suitably modifying the meth-

ods of Ginsburg and Spanier [l].

Lemma 3.1. If L(G) is nonempty and bounded where G is of order k,

thenXAx, • • ■ , XAk are all commutative for each k-tuple (Ai, • • • , Ak).

Proof. Let G = (F, 2, P, S) be the EMG generating L. Assume

that S depends on each ¿-tuple of nonterminals in G, and that Wa

= {wi • • • wk/Ai • • • Atßkwi • ■ ■ wk, wrin2*} is nonempty for each

¿-tuple (Ai, • •" • , Ak)=A in G. Since S depends on A, there exist

ui, • ■ • , uk in 2* such that {uiWi • ■ ■ ukwk/wi ■ ■ • wk in WA]

QL(G). Thus Wa is nonempty and bounded. Let Xi • • -.% be a

specific word in Wa.

Consider the set Xai(G). Suppose there are words «i and v\ in Xax

so that UiVi7¿VíUi. It is easily seen that for each Wi in {ui, »i}*—e

there are words w2, • • • , w* in 2* so that.4i • • • AißswiAi • • • wkAk

=WiXi • • • wkxk. Hence (ui, u2)*—6<^Xai and WiXi ■ • • wkxk is in

Wa- « is also in XAl. Thus each word Wy\Je in {ui, u2\ * is a subword

of some word WiXi • • • wkxk in Wa. By Lemma 5.3 of [l], Wa is not

bounded. This is a contradiction. Therefore «i«2 = «2«i for every two

words Mi, Ui in XAl(G) i.e. Xa^G) is a commutative set.

A similar argument shows that Xa2(G), • • • , XAk(G) are all

commutative sets.

Lemma 3.2. If Xai(G), ■ ■ • , XAk(G) are all commutative sets for

each k-tuple (Ai, • • • , Ak) of G of order ¿, then L(G) is bounded.

Proof. The proof is by induction on the number of ¿-tuples of

nonterminals. Suppose (Ai, • • -, Ak) is the only nonterminal in G,

apart from 5. By Lemma 5.2 of [l], Xa^Qui , • • • , XA*Qu* for

some words m, • • • , «* in 2*. Let all the initial and terminal rules

of G be [S^fijAi ■ ■ •fkjAk],j=l, • ■ ■ ,m;
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'^l-*Wii

•-1, ».

lAk ■ WkiJ

If y be any word in L(G), there is some 5-derivation of y as S=$fijAi

■ ' • fkjAkß>fijViAi ■ • ■ fkjvkAk=ïfijViWu ■ ■ ■ fkjVkwki,   l¿/áf»,   l^i
*

. uk.ún, Vi, • ■ ■ ,vk in XAl,

Thus

L(G) ç

, XjLk which are subsets of ux,

m y   n

U    u
;=1 L {=1

fxjUxWu ■ fkjUkWk']

Therefore L(G) is bounded.

Suppose that G has p ¿-tuples of variables (Au, • • • , Aki), i

= 1, • • • , p, where p> 1 and that the lemma is true for all grammars

with fewer than p variables. Let G¡ he the grammar obtained from G

by deleting all the production rules involving (Ai¡, • • • , Ak]). Let

Yau(Gj), • ■ • , YAki(Gj) be the set of words yi¿, • • • , y*¿ such that

An ■ • ■ AkAoj yu ■ ■ ■ yki in 2*. XAu(Gj), ■ ■ ■ , XAki(Gj) being

subsets of Xau(G), • • • , XAki(G) are all bounded. By the induction

hypothesis L(Gf) is bounded. YAu(Gj), • • ■ , YAki(G,) consisting of

subwords of words in L(G¡) are bounded. Let there be q initial rules

[S—i/ij.<4ij • • •/*}^4*;]./=l) - • • . <Z- For each such/, consider

(**) fxjXA  (G)giiYA  (G/)
Xj X,

i in {1, • • • , p} — {/} where

■in-

fkjXA  (G)gkiYA  (Gj),
k] kx

gxiAxi

Akj^> gkiAkiJ

are all the rules of G with (An, • • • , Akj) occurring on the left side.

(When the above rule is terminal, the F's are empty.) Since there are

only a finite number of such rules the sets (**) are bounded. The proof

is completed by noting that

L(G) Ç U fijXA e«Fv • • -fkiXA gkiYA.
Xj li kj k%

i=X

Combining Lemmas 2.1 and 2.2 we get

Theorem 3.1. A necessary and sufficient condition that an EML
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L(G)tí0 be semilinear is that Xa¡(G), ■ ■ -, XAk(G) be all commutative

for each variable (Ai, • • • , Ak) in G of order k.

Lemma 3.3. For each variable (Ai, • ■ • , Ak) in G of order ¿, XAl(G),

• • ■ , Xau(G) are regular sets and effectively determined.

The proof is obvious from the definition of an EMG that all rules

except the initial rules consist of ¿ left-linear rules.

Now from Lemma 2.3, and Lemmas 5.7 and 5.8 of [l] and the

proof of Lemma 2.2, the following decision theorem is immediate.

Theorem 3.2. (a) It is decidable whether or not a given EML L(G)

is bounded.

(b) If L(G) is bounded then words wu • • • , wt in 2* can be effec-

tively found so that L(G) Qwi ■ • ■ wx .

Theorem 3.3. If Li, L2 are EML and one of them is semilinear, then

it is solvable whether (a) LXÇ,L2 and whether (b) L2CLLi,

Proof is immediate from the proof of Theorem 6.3 of [l] using

the corresponding results for EML obtained in Theorems 2.2 and 1.1.

Corollary. If Li, L2 are EML and one of them is semilinear then it

is solvable whether Li = L2.

Several of the mathematical properties of semilinear sets proved

in [4] can also be established by considering bounded EML.
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