WHEN ARE MULTIPLICATIVE MAPPINGS ADDITIVE?

WALLACE S. MARTINDALE III

Let R and S be arbitrary associative rings (not necessarily with identity elements). A one-one mapping σ of R onto S such that $(xy)^{\sigma} = x^{\sigma}y^{\sigma}$ for all x, $y \in R$ will be called a multiplicative isomorphism of R onto S. The question of when a multiplicative isomorphism is additive has been considered by Rickart [1] and also by Johnson [2]. In both of these papers some sort of minimality conditions were imposed on the ring R. It is our aim in this note to generalize the main theorem of Rickart's paper [1, p. 761, Theorem II] and at the same time remove the minimality condition. (Our results are along different lines than those in Johnson's paper [2], in which he assumes each nonzero "closed" right ideal contains a minimal nonzero "closed" right ideal.) Rickart's theorem says the following:

Let R be a ring containing a family $\{J_{\alpha} | \alpha \in A\}$ of right ideals which satisfies

- (i) Each J_{α} is irreducible (i.e., J_{α} is minimal and $J_{\alpha}R \neq 0$).
- (ii) $J_{\alpha}x = 0$ for each $\alpha \in A$, implies x = 0 (hence R is Jacobson semisimple).
- (iii) Each J_{α} , considered as a vector space over the division ring $\operatorname{Hom}_{R}(J_{\alpha}, J_{\alpha})$, is of dimension greater than one.

Then any multiplicative isomorphism of R onto an arbitrary ring S is necessarily additive.

It is well known that any minimal right ideal in a semisimple ring is of the form J=eR, e an idempotent. Semisimplicity also says that xR=0 implies x=0. From (iii) we may conclude that for each $J(=J_{\alpha})$ there is a nonzero "vector" in J=eR of the form ey(1-e). Indeed, if eR(1-e)=0 then eR=eRe, which says that J is one dimensional over the division ring eRe. Therefore, if a "scalar" exe is such that (exe)(eR)(1-e)=0 then exe=0.

The remarks in the preceding paragraph show that Rickart's result is a special case of our main theorem, which we now state.

THEOREM. Let R be a ring containing a family $\{e_{\alpha} | \alpha \in A\}$ of idempotents which satisfies:

- (1) xR = 0 implies x = 0.
- (2) If $e_{\alpha}Rx = 0$ for each $\alpha \in A$, then x = 0 (and hence Rx = 0 implies x = 0).
 - (3) For each $\alpha \in A$, $e_{\alpha}xe_{\alpha}R(1-e_{\alpha})=0$ implies $e_{\alpha}xe_{\alpha}=0$.

Received by the editors August 19, 1968.

Then any multiplicative isomorphism σ of R onto an arbitrary ring S is additive.

The proof will be organized in a series of lemmas. We begin with the trivial

LEMMA 1. $0^{\sigma} = 0$.

PROOF. Since σ is onto, $x^{\sigma} = 0$ for some $x \in \mathbb{R}$. Then $0^{\sigma} = (0 \cdot x)^{\sigma} = 0^{\sigma} \cdot x^{\sigma} = 0$.

For the next several lemmas we will be just dealing with one fixed idempotent e_{α} of the family. We call this idempotent e_1 and formally set $e_2 = 1 - e_1$ (R need not have an identity element). Then, letting $R_{ij} = e_i R e_j$, i, j = 1, 2, we may write R in its Peirce decomposition $R_{11} \oplus R_{12} \oplus R_{21} \oplus R_{22}$. x_{ij} will denote an element of R_{ij} .

LEMMA 2.
$$(x_{ii}+x_{jk})^{\sigma}=x_{ii}^{\sigma}+x_{jk}^{\sigma}, j\neq k$$
.

PROOF. First assume that i=j=1 and k=2. We may find an element z of R such that $z^{\sigma} = x_{11}^{\sigma} + x_{12}^{\sigma}$, since σ is onto. For $a_{1j} \in R_{1j}$ we have

$$(za_{1j})^{\sigma} = z^{\sigma}a_{1j}^{\sigma} = (x_{11}^{\sigma} + x_{12}^{\sigma})a_{1j}^{\sigma} = x_{11}^{\sigma}a_{1j}^{\sigma} + x_{12}^{\sigma}a_{1j}^{\sigma} = (x_{11}a_{1j})^{\sigma} + (x_{12}a_{1j})^{\sigma}$$
$$= [(x_{11} + x_{12})a_{1j}]^{\sigma} + 0^{\sigma} = [(x_{11} + x_{12})a_{1j}]^{\sigma}.$$

Therefore $za_{1j} = (x_{11} + x_{12})a_{1j}$, since σ is one-one. In the same fashion, for $a_{2j} \in R_{2j}$, we have $(za_{2j})^{\sigma} = z^{\sigma}a_{2j} = (x_{11}a_{2j}^{\sigma})^{\sigma} + (x_{12}a_{2j})^{\sigma} = [(x_{11} + x_{12})a_{2j}]^{\sigma}$, yielding $za_{2j} = (x_{11} + x_{12})a_{2j}$. We have thus shown that $[z - (x_{11} + x_{12})]R$ = 0, and so, by condition (1), we see that $z = x_{11} + x_{12}$, i.e. $x_{11}^{\sigma} + x_{12}^{\sigma} = (x_{11} + x_{12})^{\sigma}$. The only essentially different choice for i, j, k is to let i = k = 1 and let j = 2. In this case we are led to $R[z - (x_{11} + x_{21})] = 0$, and so once again $z = x_{11} + x_{21}$ in view of condition (2).

LEMMA 3. σ is additive on R_{12} .

PROOF. Let x_{12} , $u_{12} \in R_{12}$ and choose $z \in R$ such that $z^{\sigma} = x_{12}^{\sigma} + u_{12}^{\sigma}$. For $a_{1j} \in R_{1j}$ we have $(za_{1j})^{\sigma} = z^{\sigma}a_{1j}^{\sigma} = (x_{12}^{\sigma} + u_{12}^{\sigma})a_{1j}^{\sigma} = (x_{12}a_{1j})^{\sigma} + (u_{12}a_{1j})^{\sigma} = 0$, whence $za_{1j} = 0$. For $a_{2j} \in R_{2j}$, we see that

$$(za_{2j})^{\sigma} = z^{\sigma}a_{2j}^{\sigma} = (x_{12}^{\sigma} + u_{12}^{\sigma})a_{2j}^{\sigma} = (e_{1}^{\sigma} + x_{12}^{\sigma})(a_{2j}^{\sigma} + u_{12}^{\sigma}a_{2j}^{\sigma})$$

$$= (e_{1}^{\sigma} + x_{12}^{\sigma})[a_{2j}^{\sigma} + (u_{12}a_{2j})^{\sigma}] = (e_{1} + x_{12})^{\sigma}(a_{2j} + u_{12}a_{2j})^{\sigma}$$

$$= [(e_{1} + x_{12})(a_{2j} + u_{12}a_{2j})]^{\sigma} = [(x_{12} + u_{12})a_{2j}]^{\sigma},$$

making use of Lemma 2. Hence $za_{2j} = (x_{12} + u_{12})a_{2j}$. It follows that $[z - (x_{12} + u_{12})]R = 0$, and so by condition (1), $z = x_{12} + u_{12}$.

LEMMA 4. σ is additive on R_{11} .

PROOF. Let x_{11} , $u_{11} \in R_{11}$ and write $z^{\sigma} = x_{11}^{\sigma} + u_{11}^{\sigma}$ for some $z \in R$. Using Lemma 3 we see that $z^{\sigma}a_{12}^{\sigma} = x_{11}^{\sigma}a_{12}^{\sigma} + u_{11}^{\sigma}a_{12}^{\sigma} = (x_{11}a_{12})^{\sigma} + (u_{11}a_{12})^{\sigma} = (x_{11}a_{12} + u_{11}a_{12})^{\sigma}$, where $a_{12} \in R_{12}$. This shows that $za_{12} = (x_{11} + u_{11})a_{12}$, in other words, $[z - (x_{11} + u_{11})]R_{12} = 0$. Next we write z in terms of its components $z = z_{11} + z_{12} + z_{21} + z_{22}$ and note that

$$z^{\sigma} = x_{11}^{\sigma} + u_{11}^{\sigma} = (e_1 x_{11})^{\sigma} + (e_1 u_{11})^{\sigma} = e_1^{\sigma} x_{11}^{\sigma} + e_1^{\sigma} u_{11}^{\sigma} = e_1^{\sigma} (x_{11}^{\sigma} + u_{11}^{\sigma})$$

$$= e_1^{\sigma} (z_{11} + z_{12} + z_{21} + z_{22})^{\sigma} = \left[e_1 (z_{11} + z_{12} + z_{21} + z_{22}) \right]^{\sigma} = (z_{11} + z_{12})^{\sigma}.$$

These equations show that $z=z_{11}+z_{12}$, whence $z_{21}=z_{22}=0$. By repeating the argument with e_1 multiplied in on the right, one finds that $z_{12}=0$, thus yielding $z=z_{11}\in R_{11}$. Therefore $z-(x_{11}+u_{11})\in R_{11}$ and our previous conclusion that $[z-(x_{11}+u_{11})]R_{12}=0$ forces $z=x_{11}+u_{11}$ because of condition (3).

LEMMA 5. σ is additive on $e_1R = R_{11} + R_{12}$.

PROOF. Let x_{11} , $u_{11} \in R_{11}$ and let x_{12} , $u_{12} \in R_{12}$. Then Lemmas 2, 3, and 4 are all used in seeing that the equations

$$[(x_{11} + x_{12}) + (u_{11} + u_{12})]^{\sigma} = [(x_{11} + u_{11}) + (x_{12} + u_{12})]^{\sigma}$$

$$= (x_{11} + u_{11})^{\sigma} + (x_{12} + u_{12})^{\sigma}$$

$$= x_{11}^{\sigma} + u_{11}^{\sigma} + x_{12}^{\sigma} + u_{12}^{\sigma}$$

$$= (x_{11} + x_{12})^{\sigma} + (u_{11} + u_{12})^{\sigma}$$

hold true.

PROOF OF THE THEOREM. Let $x, y \in R$ and write $z^{\sigma} = x^{\sigma} + y^{\sigma}$ for some $z \in R$. For $\alpha \in A$, select any $t_{\alpha} \in e_{\alpha}R$. Then $(t_{\alpha}z)^{\sigma} = t_{\alpha}^{\sigma}z^{\sigma} = t_{\alpha}^{\sigma}(x^{\sigma} + y^{\sigma}) = t_{\alpha}^{\sigma}x^{\sigma} + t_{\alpha}^{\sigma}y^{\sigma} = (t_{\alpha}x)^{\sigma} + (t_{\alpha}y)^{\sigma} = (t_{\alpha}x + t_{\alpha}y)^{\sigma}$, since σ is additive on $e_{\alpha}R$ by Lemma 5. Hence $t_{\alpha}z = t_{\alpha}(x+y)$, and so we have proved that $e_{\alpha}R[z-(x+y)]=0$ for all $\alpha \in A$. Condition (2) may then be invoked to conclude that z=x+y. This says that $(x+y)^{\sigma}=x^{\sigma}+y^{\sigma}$, and the theorem is proved.

COROLLARY. Let R be a prime ring containing an idempotent $e \neq 0, 1$ (R need not have an identity). Then any multiplicative isomorphism of R onto an arbitrary ring S is additive.

COROLLARY. Let R satisfy the conditions of the theorem (or the preceding corollary). Then any multiplicative anti-isomorphism ϕ of R onto an arbitrary ring S is additive.

PROOF. Let τ be the anti-isomorphism of S onto the opposite ring S^* of S. By the theorem $\sigma = \tau \phi$ is an additive mapping of R onto S^* , and so ϕ is additive.

An interesting feature of this problem is that the conclusion of the theorem obviously fails if the ring R is either too "well behaved" or too "badly behaved." Indeed, if R is a field, the mapping $x \rightarrow x^{-1}$ (with $0\rightarrow 0$) is not in general additive. Hence the need for condition (3). On the other hand, if $R^2=0$, any one-one mapping of the set R onto itself (with $0\rightarrow 0$) is multiplicative. Conditions (1) and (2) prevent occurrences of this sort.

We remark finally that the condition that σ be onto appears to be important. Indeed, let $R = F_2$ and let $S = F_3$, where F_n denotes the ring of $n \times n$ matrices over the field F. If $a \in R$, then the mapping

$$a \to \begin{pmatrix} a & 0 \\ 0 & \det a \end{pmatrix}$$

is a one-one multiplicative mapping of R into S which is clearly not additive.

REFERENCES

- 1. C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc. 54 (1948), 758-764.
- 2. R. E. Johnson, Rings with unique addition, Proc. Amer. Math. Soc. 9 (1958), 57-61.

University of Massachusetts