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Let R and 5 be arbitrary associative rings (not necessarily with

identity elements). A one-one mapping a of R onto S such that (xy)"

= x°y* for all x, yQR will be called a multiplicative isomorphism of

7? onto 5. The question of when a multiplicative isomorphism is addi-

tive has been considered by Rickart [l] and also by Johnson [2]. In

both of these papers some sort of minimality conditions were imposed

on the ring R. It is our aim in this note to generalize the main theorem

of Rickart's paper [l, p. 761, Theorem II] and at the same time re-

move the minimality condition. (Our results are along different lines

than those in Johnson's paper [2], in which he assumes each nonzero

"closed" right ideal contains a minimal nonzero "closed" right ideal.)

Rickart's theorem says the following:

Let R be a ring containing a family {/a|a;G^4} of right ideals

which satisfies

(i) Each Ja is irreducible (i.e., Ja is minimal and JaR^O).

(ii) /ax = 0 for each aQA, implies x = 0 (hence 7? is Jacobson

semisimple).

(iii) Each Ja, considered as a vector space over the division ring

Homs(Ja, Ja), is of dimension greater than one.

Then any multiplicative isomorphism of R onto an arbitrary ring

5 is necessarily additive.

It is well known that any minimal right ideal in a semisimple ring

is of the form J = eR, e an idempotent. Semisimplicity also says that

xi? = 0 implies x = 0. From (iii) we may conclude that for each

J ( = Ja) there is a nonzero "vector" in J = eR of the form ey(l —e).

Indeed, if eR(l — e) = 0 then eR = eRe, which says that J is one dimen-

sional over the division ring eRe. Therefore, if a "scalar" exe is such

that (exe)(eR)(l— e) =0 then exe = 0.

The remarks in the preceding paragraph show that Rickart's result

is a special case of our main theorem, which we now state.

Theorem. Let Rbe a ring containing a family [ea\aQA } of idem-

potents which satisfies:

(1) xR = 0 implies x = 0.

(2) If eaRx = 0 for each aQA, then x = 0 (and hence Rx = 0 implies

x = 0).

(3) For each aQA, eaxeaR(l— ea) =0 implies ettxea = 0.
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Then any multiplicative isomorphism a of R onto an arbitrary ring S

is additive.

The proof will be organized in a series of lemmas. We begin with

the trivial

Lemma 1. 0" = 0.

Proof. Since a is onto, x' = 0 for some xER- Then 0" = (0-x)'

= 0°-xl7 = 0.

For the next several lemmas we will be just dealing with one fixed

idempotent ea of the family. We call this idempotent ei and formally

set e2 = l—ex (R need not have an identity element). Then, letting

Rij = e,Rej, i, j=l, 2, we may write £ in its Peirce decomposition

£n©£i2©£2i©£22- Xij will denote an element of £,y.

Lemma 2. (xu+Xjk)"=x°i+x%,J7ák.

Proof. First assume that i=j = l and k = 2. We may find an ele-

ment z of £ such that z" = xlx+xl2, since tris onto. For aijERxj we have

(zaij)   = z aij = (in + xii)aij = Xn^ij + x12aij = (xuaij)  + (x12a1;-)

= [(*n + *i2)<iijF + 0° = [(»u + xi2)aij] .

Therefore za^ = (xn+Xi2)aij, since <r is one-one. In the same fashion,

for a2jER2j, we have (za2j)' = zca2j = (xiia°2j)'' + (xi2a2l)''= [(xii+x^a^y]",

yielding za2j = (xu+Xi2)a2j. We have thus shown that [z — (xu+Xi2) ]R

= 0, and so, by condition (1), we see that z—xxx+x12, i.e. Xn+Xi2

= (xxx+Xi2y. The only essentially different choice for i, j, k is to let

¿ = ¿ = 1 and let/= 2. In this case we are led to R[z — (xn+x2i)]=0,

and so once again z = Xu+x2i in view of condition (2).

Lemma 3. a is additive on £i2.

Proof. Let Xi2, uuERu and choose zER such that z° = x\2+u\2.

For aijERxj we have (zaxj)'= z"a\j = (x\r2+u"l2)a'¡j=(xiiaijy + (ui2aij)''

= 0, whence zaij — 0. For a2jERv, we see that

(za2])   = z a2j = (xi2 + ui2)a2j = (ei + xi2)(a2j + Ui2a2l)

= (e"i + xi2) [a2j + (u12a2j) ] = (ex + xu) (a2j + Ui2a2])'

= [(«i + xi2)(a2j + ui2a2j)]   = [(xu + Ui2)a2]\ ,

making use of Lemma 2. Hence za^j— (xí2+ui2)a2j. It follows that

[z —(xi2+Mi2)]£ = 0, and so by condition (1), z=xi2+ul2.
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Lemma 4. a is additive on Ru.

Proof. Let Xn, UnQRn and write z' =x\x+u\i for some zQR. Using

Lemma 3 we see that z'a\2=x"iia\2+u\ia\2—(xiiai2y+(unai2)''

= (xnaii + Unau)", where ai2QRi2. This shows that zai2 = (xii+Mn)ai2,

in other words, [z —(xii-r-«u)]7?i2 = 0. Next we write z in terms of its

components z=zn+Zi2-|-z2i+z22 and note that

z   = in + «ii = (eiXn)   + (ei«u)   = eiXii + erun = ei(xn + «u)

= efai + zu + Z21 + z22)  = [ei(zu + Zi2 + Z2i + Z22)]   = (zu + z«) .

These equations show that z = Zn+Zi2, whence z2i=z22 = 0. By re-

peating the argument with ei multiplied in on the right, one finds

that Zi2 = 0, thus yielding z=ZuQRn. Therefore z — (xii+Wu)£7?u

and our previous conclusion that [z — (xu+Un)]Ri2 = 0 forces z

= Xu+Mn because of condition (3).

Lemma 5. a is additive on eiR = Rn+Ri2.

Proof. Let Xu, WuE7?u and let xi2, Mi2E7^i2. Then Lemmas 2, 3,

and 4 are all used in seeing that the equations

[(Xn + X12) + («11 + M12)]     =  [(xn + «11) + (Xi2 + M12)]

= (Xn + «il)   + (Xi2 + «12)

=  Xn + Mu + X12 + «12

=  (Xn + Xiü)    + («11 + Mlü)

hold true.

Proof of the Theorem. Letx, yQR and write z" = x"+y for some

zQR. For aQA, select any taQeaR. Then (t*z)'=&=fa(x°+y")

= fax"+tay" = (tax)''+(tay)'' = (taX+tay)'', since a is additive on eaR

by Lemma 5. Hence taz = ta(x+y), and so we have proved that

eaR[z — (x+y)] =0 for all aQA. Condition (2) may then be invoked

to conclude that z = x+3'. This says that (x+y)'=x"+y', and the

theorem is proved.

Corollary. Let Rbe a prime ring containing an idempotent e^O, 1

(R need not have an identity). Then any multiplicative isomorphism of

R onto an arbitrary ring S is additive.

Corollary. Let R satisfy the conditions of the theorem (or the pre-

ceding corollary). Then any multiplicative anti-isomorphism <p of R

onto an arbitrary ring S is additive.
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Proof. Let t be the anti-isomorphism of 5 onto the opposite ring

S* of 5. By the theorem a = rdy is an additive mapping of £ onto S*,

and so <p is additive.

An interesting feature of this problem is that the conclusion of the

theorem obviously fails if the ring £ is either too "well behaved" or

too "badly behaved." Indeed, if £ is a field, the mapping x—>x_1 (with

0—>0) is not in general additive. Hence the need for condition (3). On

the other hand, if £2 = 0, any one-one mapping of the set £ onto

itself (with 0—>0) is multiplicative. Conditions (1) and (2) prevent

occurrences of this sort.

We remark finally that the condition that <s he onto appears to be

important. Indeed, let R = F2 and let S=F3, where £„ denotes the

ring of «X« matrices over the field £. If aER, then the mapping

\0    det a)

is a one-one multiplicative mapping of £ into S which is clearly not

additive.
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