WHEN ARE MULTIPLICATIVE MAPPINGS ADDITIVE?
WALLACE S. MARTINDALE III

Let R and S be arbitrary associative rings (not necessarily with
identity elements). A one-one mapping ¢ of R onto S such that (xy)°
=x7y° for all x, yER will be called a multiplicative isomorphism of
R onto S. The question of when a multiplicative isomorphism is addi-
tive has been considered by Rickart [1] and also by Johnson [2]. In
both of these papers some sort of minimality conditions were imposed
on the ring R. It is our aim in this note to generalize the main theorem
of Rickart’s paper [1, p. 761, Theorem II] and at the same time re-
move the minimality condition. (Our results are along different lines
than those in Johnson’s paper [2], in which he assumes each nonzero
“closed” right ideal contains a minimal nonzero “closed” right ideal.)
Rickart’s theorem says the following:

Let R be a ring containing a family {J.|a€A4} of right ideals
which satisfies

(i) Each J, is irreducible (i.e., J, is minimal and J,R#0).

(if) Jax=0 for each a& A, implies x=0 (hence R is Jacobson
semisimple).

(iii) Each J,, considered as a vector space over the division ring
Hompg(Ja, Ja), is of dimension greater than one.

Then any multiplicative isomorphism of R onto an arbitrary ring
S is necessarily additive.

It is well known that any minimal right ideal in a semisimple ring
is of the form J=e¢R, ¢ an idempotent. Semisimplicity also says that
xR=0 implies x=0. From (iii) we may conclude that for each
J (=J.) there is a nonzero “vector” in J=¢R of the form ey(1 —e).
Indeed, if eR(1 —e) =0 then eR =eRe, which says that J is one dimen-
sional over the division ring eRe. Therefore, if a “scalar” exe is such
that (exe)(eR)(1—e) =0 then exe=0.

The remarks in the preceding paragraph show that Rickart’s result
is a special case of our main theorem, which we now state.

THEOREM. Let R be a ring containing a family {e.,l acAd } of idem-
potents which satisfies:

(1) xR=0 implies x=0.

(2) If eaRx =0 for each aE A, then x =0 (and hence Rx =0 implies
x=0).

(3) For each a€E A, e xe.R(1—e.) =0 implies e xe,=0.
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Then any multiplicative isomorphism o of R onto an arbitrary ring S
is additive.

The proof will be organized in a series of lemmas. We begin with
the trivial

LEmMA 1. 0°=0.

Proor. Since ¢ is onto, x*=0 for some x&R. Then 0°=(0-x)"
=07-x°=0.

For the next several lemmas we will be just dealing with one fixed
idempotent e, of the family. We call this idempotent ¢; and formally
set ee=1—e¢; (R need not have an identity element). Then, letting
Ri;=e;Rej, 1, j=1, 2, we may write R in its Peirce decomposition
R ® Ri;® Ry ® Res. x;; will denote an element of R;;.

LEMMA 2. (xii+2i)° =x5+%5, j #Zk.

ProoF. First assume that 1=j=1 and 2=2. We may find an ele-
ment z of R such that z° =x{, +x7,, since ¢ is onto. For a,;& Ry; we have

g g 2 g (4 o '3 (4 [ 4 g
(Zan‘)v =20, = (xn + xlz)dn‘ = %1101 T %1201 = (xudu) + (xlzdu‘)

[(xu + xlz)dur + 00 = [(xu + xl2)alj]¢-

Therefore za;1;= (xu-+%12)a1;, since ¢ is one-one. In the same fashion,
for a;;E Ry, we have (2a2,)° =2°as; = (¥103;)° + (X1202;)° = [(en +2x12) @257,
yielding zas; = (%11 +%12)a2;. We have thus shown that [z — (xu+x1) |R
=0, and so, by condition (1), we see that z=xu-+x1, i.e. x5;+x7,
= (xun+%12)°. The only essentially different choice for 2, j, k is to let
i=k=1 and let j=2. In this case we are led to R[z— (x1+x2)]=0,
and so once again 2z =x5;+x2 in view of condition (2).

LEMMA 3. ¢ is additive on Ry,.

ProoF. Let x5, #1sE Ry; and choose zER such that z7 =x5+ug,.
For a;;ER;; we have (2a1;)? =2%a],= (X2 +u13)af; = (£1201;)° + (412015)°
=0, whence 2za;;=0. For a;;ERs;, we see that

(303,)" = 2 @s; = (%12 + urs)as; = (ex + %12) (az; + 1203;)
(e1 + 212)[as; + (u1202)"] = (er + %12) (@2j + U12027)°
= [(er + 219) (25 + #12027)]" = [(@12 + w12)ass]’,

making use of Lemma 2. Hence zas;= (%121 #12)as;. It follows that
[z2— (x124+u12) JR=0, and so by condition (1), z =213+ u12.
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LEMMA 4. o is additive on Ry

PRrOOF. Let x11, #1:E Ry; and write 2° =x7;, +u{, for some 2ER. Using
Lemma 3 we see that z%al,=x7a%+ulal; = (¥1012)" + (#11012)°
= (xua12+uua12)", where a2 ERIZ- This shows that 2012 = (xu+uu)am,
in other words, [z— (%1 +u%1) |Riz=0. Next we write z in terms of its
components 2 =2y 4213+ 2u1+ 222 and note that

o o o g L2 o o o a [ [ (3
2 =%+ un = (exn) + (em11) = ey + exnn = ex(nn + %)
o o o o
= 61(211 + 212 + 221 + 222) = [61(211 + 212+ 201+ Zzz)] = (211 + 212) .

These equations show that z=2;+212, whence 2z =2,,=0. By re-
peating the argument with ¢; multiplied in on the right, one finds
that 212=0, thus yxeldmg z=21ERy. Therefore Z—(x11+un) €ERy
and our previous conclusion that [z— (%i=4%u)]Rie=0 forces z
=x11-+un because of condition (3).

LEMMA 5. o s additive on ;R = Ry + Ras.

Proor. Let X1, unERn and let %12, U19E Ry, Then Lemmas 2, 3,
and 4 are all used in seeing that the equations

[(xu + xlz) + (uu + un)]a = [(xu + un) + (xlz + uu)]a
(1 + wy) + (212 + 15)”
x:l + u:1 + xiz + uiz

(11 + x12)v + (un + uu)a

hold true.

PROOF OF THE THEOREM. Let x, yE R and write 2° =x°+y° for some
2ER. For aE A, select any t,Ee,R. Then (t.2)? =i32° =15(x°+75°)
=17x7 13y = (Lax)® + (t2y)* = (tax +Lay)?, since o is additive on e,R
by Lemma 5. Hence f.z2=t.(x+7y), and so we have proved that
e«R[z2—(x+7y)] =0 for all € 4. Condition (2) may then be invoked
to conclude that z=x-+7y. This says that (x+y)’=x"+y°, and the
theorem is proved.

COROLLARY. Let R be a prime ring containing an idempotent e#0, 1
(R need not have an identity). Then any multiplicative isomorphism of
R onto an arbitrary ring S is additive.

COROLLARY. Let R satisfy the conditions of the theorem (or the pre-
ceding corollary). Then any multiplicative anti-isomorphism ¢ of R
onto an arbitrary ring S is additive.
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PRroOF. Let 7 be the anti-isomorphism of S onto the opposite ring
S* of S. By the theorem ¢ =1¢ is an additive mapping of R onto S*,
and so ¢ is additive.

An interesting feature of this problem is that the conclusion of the
theorem obviously fails if the ring R is either too “well behaved” or
too “badly behaved.” Indeed, if R is a field, the mapping x—x~! (with
0—0) is not in general additive. Hence the need for condition (3). On
the other hand, if R?=0, any one-one mapping of the set R onto
itself (with 0—0) is multiplicative. Conditions (1) and (2) prevent
occurrences of this sort.

We remark finally that the condition that ¢ be onto appears to be
important. Indeed, let R=F, and let S=F;, where F, denotes the
ring of # X7 matrices over the field F. If ¢ &R, then the mapping

(o dee)
a—
0 dete

is a one-one multiplicative mapping of R into S which is clearly not
additive.
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