FINITELY GENERATED COHERENT ANALYTIC SHEAVES

BERNARD KRIPKE

If S is a coherent analytic sheaf on the complex analytic space X, then for each $x \in X$, the stalk S(x) is a finitely generated O(x)-module, where O is the structure sheaf of X [1]. Since O(x) is a local ring, there is a minimum number, #(S, x), of germs that generate S(x) as an O(x)-module, and every set of generators for S(x) contains a subset of #(S, x) generators [2, p. 14].

If there are n global sections $s_1, \dots, s_n \in S(X)$ whose germs generate the stalk of S at every point, then evidently:

- (A) for every $x \in X$, S(x) is generated by global sections of S and,
- (B) $\{\#(\$, x) : x \in X\}$ is a bounded set of integers. In fact, $\{\#(\$, x) : x \in X\}$ is bounded by n. The principal result of this note is that the converse also is true in case X has finite global dimension. If the global sections of \$ generate its stalk at each point and if $\{\#(\$, x) : x \in X\}$ is bounded, then *finitely many* of the global sections of \$ generate its stalk at each point.

Let us say that a subset G of S(X) generates $S \mid K$ if for each $x \in K$, $\{s(x): s \in G\}$ generates the stalk S(x). If K = X, say that G generates S. An ordered n-tuple $(s_1, \dots, s_n) \in S(X^n)$ generates $S \mid K$ if $\{s_1, \dots, s_n\}$ generates $S \mid K$. Let G(S, n, K) be the set of all n-tuples in $S(X)^n$ which generate $S \mid K$.

If U is an open subset of X, then S(U) has a natural metrizable topology, which makes S(U) into a Fréchet space. If V is open and contains U, the restriction map $r_{VU}: S(V) \rightarrow S(U)$ is continuous [1, Chapter VIII]. A residual set in $S(X)^n$ is the complement of a set of the first category.

1. THEOREM. Let X be a d-dimensional analytic space and let S be a coherent analytic sheaf on X that is generated by S(X). If $\#(S, x) \leq n$ for every $x \in X$, then G(S, n(d+1), X) is a dense residual set in $S(X)^{n(d+1)}$; in particular, it is not empty.

The theorem follows from a series of lemmas.

2. LEMMA. Let X be a complex analytic space and let S be a coherent analytic sheaf on X. If U is an Oka-Weil domain in X [1, p. 211] and K is a compact O(U)-convex subset of U, then G(S, n, K) is open in $S(X)^n$, for each positive integer n.

Received by the editors February 26, 1968.

PROOF. Suppose $t_1, \dots, t_n \in S(X)$ generate $S \mid K$. Then K has an open neighborhood $V \subseteq U$ that is also an Oka-Weil domain such that t_1, \dots, t_n generate S V [1, pp. 211 and 244]. Identify $\mathbb{C}^{n \times n}$ with the space of $n \times n$ complex matrices, and let $E: \mathfrak{O}^{n \times n} \mid V \to \mathbb{S}^n \mid V$ be the map defined by $E(f) = (\sum_{i} f_{ij}t_{ji}, \cdots, \sum_{i} f_{ni}t_{ij})$. Then E is a homomorphism of coherent sheaves. Ker E is a coherent sheaf, and by Cartan's Theorem B, $H^1(V, \text{ Ker } E) = 0$. Since t_1, \dots, t_n generate $S \mid V$, the sequence $0 \rightarrow H^0(V, \text{ Ker } E) \rightarrow H^0(V, \mathfrak{S}^{n \times n}) \rightarrow H^0(V, \mathfrak{S}) \rightarrow 0$ is exact. That is, $E: \mathfrak{O}(V)^{n \times n} \to \mathfrak{S}(V)$ is a surjection. $R = \{ f \in \mathfrak{O}(V)^{n \times n} : f(x) \}$ is an invertible matrix for each $x \in K$ is open in $\mathfrak{O}(V)^{n \times n}$, since the topology of $O(V)^{n \times n}$ is that of uniform convergence on compacta [1, p. 237], and the set of invertible matrices is open in $\mathbb{C}^{n\times n}$. It follows from the Open Mapping Theorem for Fréchet spaces that E(R) is open in $S(V)^n$. Since r_{XV} is continuous, $r_{XV}^{-1}(E(R))$ is open in $S(X)^n$. But if $s \in S(X)^n$ and $r_{XV}(s) \in E(R)$, then s generates S V. Thus G(S, n, K) contains a neighborhood $r_{XV}^{-1}(E(R))$ of t.

3. Lemma. Let X be a complex analytic space, S a coherent analytic sheaf on X, and $s_1, \dots, s_n \in S(X)$. Then $Y = \{y \in X : s_1(y), \dots, s_n(y) \}$ do not generate S(y) is an analytic subvariety of X.

PROOF. Let 3 be the subsheaf of 8 generated by s_1, \dots, s_n . Then Y is the support of the coherent analytic sheaf 8/3 [3, p. 87].

4. LEMMA. Let X be a complex analytic space, let $x \in X$, and let 8 be a coherent analytic sheaf on X such that S(X) generates S(x). Let $n \ge \#(S, x)$. Then $G(S, n, \{x\})$ is dense in $S(X)^n$.

PROOF. Since S(X) generates S(x) and $n \ge \#(S, x)$, we can choose a $t \in S(X)^n$ that generates S(x). Let s be any element of $S(X)^n$. Say $s_i(x) = \sum_j c_{ij}t_j(x)$, where the matrix-valued function c is analytic in a neighborhood of x. Then $S(x) - \lambda t(x) = (c - \lambda I)t(x)$, so that $s - \lambda t$ will generate S(x) provided that the matrix $c - \lambda I$ is nonsingular in a neighborhood of x. This will be true if λ is distinct from each of the n eigenvalues of the matrix c(x). There are arbitrarily small numbers λ with this property. Hence there are sections $s - \lambda t$ of $S(X)^n$ arbitrarily close to s that generate S(x).

5. LEMMA. Let X be a d-dimensional complex analytic space, let S be a coherent analytic sheaf on X, and let K be a compact subset of X. Suppose that S(X) generates S|K and that $n \ge \#(S, x)$ for each $x \in K$. Then G(S, n(d+1), K) is dense in $S(X)^{n(d+1)}$.

PROOF. Let A be a nonempty open set in $S(X)^{n(d+1)}$. Then A contains a nonempty open set of the form $A_1 \times \cdots \times A_{d+1}$, where A_i

is open in $S(X)^n$ for $i=1, \dots, d+1$. Suppose that $0 \le k \le d+1$. Let us show that for each i such that $1 \le i \le k$, we can choose a section $s^i \in A_i$ with the following property. Let $Y_k = \{x \in X : (s^1(x), \dots, s^k(x)) \text{ does not generate } S(x)\}$. $(Y_k \text{ is a variety by Lemma 3.})$ Then no irreducible branch of Y_k of dimension greater than d-k intersects K.

The proof is by induction on k. For k=0, $Y_0=X$ and there is nothing to prove. Suppose we have chosen s^1, \dots, s^k so that no irreducible branch of Y_k of dimension greater than d-k intersects K. Let B_1, \dots, B_p be the irreducible branches of Y_k which do intersect K. Since S is coherent, there is actually a neighborhood U of K such that $\#(S, x) \leq n$ for each $x \in U$. Therefore, for each $j=1, \dots, p$, we can choose a regular point $x_j \in B_j$ such that $\#(S, x_j) \leq n$. Then $D_j = \{s \in S(X)^n : s \text{ generates } S(x_j)\}$ is open (Lemma 2) and dense (Lemma 4) in $S(X)^n$. Choose s^{k+1} in $A_{k+1} \cap D_1 \cap \dots \cap D_p$. Then no (n-k)-dimensional branch of Y_{k+1} can intersect K.

In particular, (s^1, \dots, s^{d+1}) is an element of A such that $Y_{d+1} \cap K = \emptyset$, or in other words, (s^1, \dots, s^{d+1}) is an element of A that generates $S \mid K$.

PROOF OF THEOREM 1. Express X as the union of countably many compact subsets K_1 , K_2 , K_3 , \cdots , each of which is contained in an Oka-Weil domain in which it is holomorphically convex. According to Lemmas 2 and 5, $G(S, n(d+1), K_j)$ is open and dense in $S(X)^{n(d+1)}$ for each $j=1, 2, 3, \cdots$. Therefore,

$$G(\$, n(d+1), X) = \bigcap_{j=1}^{\infty} G(\$, n(d+1), K_j)$$

is a residual set in $S(X)^{n(d+1)}$. Since $S(X)^{n(d+1)}$ is a Fréchet space, the Baire Category Theorem shows that G(S, n(d+1), X) is dense in $S(X)^{n(d+1)}$.

6. COROLLARY. If X is a d-dimensional analytic space and B is a n-dimensional vector bundle over X which is generated by its global sections, then B is generated by n(d+1) of its global sections.

If X is a Stein space, every coherent sheaf on X satisfies condition (A), according to Cartan's Theorem A [1]. At least when X is an open subset of a Stein manifold, the converse is also true. Indeed, in this case X satisfies the hypotheses of the following proposition, according to Rossi [4].

7. Proposition. Let X be an analytic space with the following properties.

- (a) X can be embedded as an open subset of a Stein space Y in such a way that the restriction map $r: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$ is bijective.
- (b) Whenever S is the sheaf of ideals of a 0-dimensional variety in X, S(X) generates S.

Then X is a Stein space.

PROOF. It will be enough to show that X = Y. If $X \neq Y$, there must be a component C of Y which is not contained in X. However, $C \cap X$ cannot be empty since the restriction $\mathfrak{O}(Y) \rightarrow \mathfrak{O}(X)$ is injective. Therefore, there must be a y on the boundary of $C \cap X$ with respect to C.

Let $\{x_n\}$ be a sequence in $C \cap X$ converging to y, and let S be the sheaf of ideals of $\{x_n\}$ over X. Let $Z = \{x \in X : f(x) = 0 \text{ for each } f \in S(X)\}$. It will be enough to show that Z has dimension greater than 0, for then we will have contradicted the hypothesis that S is generated by its global sections. Since r is a bijection, we can form $W = \{w \in Y : (r^{-1}f)(w) = 0 \text{ for each } f \in S(X)\}$. Clearly, W is a subvariety of Y and $W \cap X = Z$. Since Y is an accumulation point of Z, $\dim_{V}(W) \neq 0$. If the irreducible branches of W passing through Y are B_1 , \cdots , B_p , at least one of them must contain infinitely many points of Z, B_1 let us say. But then $\dim B_1 > 0$, and $\dim Z \ge \dim B_1$.

8. PROPOSITION. Let M be a 2-dimensional complex manifold and let $f: \mathbb{O}^n \to \mathbb{O}^m$ be an O-homomorphism. Then for every $x \in M$, $\#(\text{Ker } f, x) \leq n$.

PROOF. Consider the exact sequence $(\operatorname{Ker} f)(x) \to \mathfrak{O}(x)^n \to \mathfrak{O}(x)^n \to \mathfrak{O}(x)^m / (\operatorname{Im} f)(x) \to 0$. According to the Hilbert Syzygy Theorem [1, p. 74], $(\operatorname{Ker} f)(x)$ is a free $\mathfrak{O}(x)$ -module. Since $(\operatorname{Ker} f)(x)$ is a free submodule of $\mathfrak{O}(x)^n$, $\#(\operatorname{Ker} f, x) \leq n$. (The field of quotients Q of $\mathfrak{O}(x)$, being the direct limit of copies of $\mathfrak{O}(x)$, is a flat $\mathfrak{O}(x)$ -module. Thus the sequence $0 \to Q \otimes_{\mathfrak{O}(x)} (\operatorname{Ker} f)(x) \to Q \otimes_{\mathfrak{O}(x)} \mathfrak{O}(x)^n$ is exact. But $Q \otimes \mathfrak{O}(x)^n$ is an n-dimensional vector space over Q, and $Q \otimes (\operatorname{Ker} f)(x)$ is a vector space over Q of dimension $\#(\operatorname{Ker} f, x)$.)

9. COROLLARY. Let M be a 2-dimensional Stein manifold. If I and J are finitely generated ideals in the ring of holomorphic complex-valued functions on M, then $I \cap J$ is also finitely generated.

PROOF. The following proof was suggested to me by Lance Small. Let a_1, \dots, a_n be generators for I, and let b_1, \dots, b_m be generators for J. Let \mathfrak{g} and \mathfrak{g} be respectively the subsheaves of \mathfrak{O} generated by I and J. According to Cartan's Theorem B, $I = \mathfrak{g}(M)$, $J = \mathfrak{g}(M)$, and $I \cap J = (\mathfrak{g} \cap \mathfrak{g})(M)$. Thus it will suffice to prove that $\mathfrak{g} \cap \mathfrak{g}$ is generated by finitely many of its global sections. In fact, it will be shown that

 $\#(\mathfrak{g} \cap \mathfrak{g}, x) \leq n+m$ for every $x \in M$, and hence that $I \cap J$ is generated by 3(n+m) of its elements according to Theorem 1.

Let $f: \mathbb{O}^{n+m} \to \mathbb{O}$ be the map defined by $f(c_1, \dots, c_{n+m}) = c_1 a_1 + \dots + c_n a_n - c_{n+1} b_1 - \dots - c_{n+m} b_m$. Then $\#(\operatorname{Ker} f, x) \leq n + m$ for every $x \in M$ by Proposition 8. But the formula $\pi(c_1, \dots, c_{n+m}) = c_1 a_1 + \dots + c_n a_n$ evidently defines a surjection $\pi: \operatorname{Ker} f \to \mathfrak{G} \cap \mathfrak{G}$. It follows that $\#(\mathfrak{G} \cap \mathfrak{G}, x) \leq \#(\operatorname{Ker} f, x) \leq n + m$ for every $x \in M$.

I do not know whether Corollary 9 would remain true if the condition of 2-dimensionality were dropped. I conjecture that it would not. In one dimension, the corollary is trivial since every finitely generated ideal is then principal.

10. Example. The bound n(d+1) is the best possible if the density of G(S, n(d+1), X) in $O(X)^{n(d+1)}$ is to be preserved.

Consider, in the complex plane \mathfrak{C} , the subsheaf \mathfrak{S} of \mathfrak{O} generated by the coordinate function z. Although one global section suffices to generate \mathfrak{S} , every section in a neighborhood of the section z^2 has two zeros in \mathfrak{C} , and therefore fails to generate \mathfrak{S} .

REFERENCES

- 1. R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
 - 2. M. Nagata, Local rings, Interscience, New York, 1962.
- 3. R. Narasimhan, Introduction to the theory of analytic spaces, Lecture notes in mathematics No. 25, Springer-Verlag, New York, 1966.
- 4. H. Rossi, On envelopes of holomorphy, Comm. Pure Appl. Math. 16 (1963), 9-19.

University of California, Berkeley