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If S is a coherent analytic sheaf on the complex analytic space X,

then for each xQX, the stalk S(x) is a finitely generated 0(x)-module,

where 0 is the structure sheaf of X [l]. Since 6(x) is a local ring,

there is a minimum number, #(§, x), of germs that generate S(x) as an

e(x)-module, and every set of generators for S(x) contains a subset

of #(S, x) generators [2, p. 14].

If there are n global sections Si, • • ■ , snQS,(X) whose germs gen-

erate the stalk of S at every point, then evidently:

(A) for every xQX, §>(x) is generated by global sections of S and,

(B) {#(S, x) : x Q X} is a bounded set of integers. In fact,

{#(§, x): xQX] is bounded by n. The principal result of this note is

that the converse also is true in case X has finite global dimension.

If the global sections of S generate its stalk at each point and if

{#(S, x): xQX] is bounded, then finitely many of the global sections

of S generate its stalk at each point.

Let us say that a subset G of §>(X) generates s| K ii for each xQK,

{s(x): sQG] generates the stalk §>(x). If K=X, say that G generates

S. An ordered «-tuple (si, ■ • • , sn) Q S(Ar") generates s| K if

{si, ■ ■ • , s„] generates s| K. Let G(S, n, K) be the set of all «-tuples

in S (A)" which generate s| K.

If U is an open subset of X, then §>(U) has a natural metrizable

topology, which makes S(U) into a Fréchet space. If F is open and

contains U, the restriction map rVu- S(F)—»§(£/) is continuous [l,

Chapter VIII ]. A residual set in S (A)" is the complement of a set of

the first category.

1. Theorem. Let X be a d-dimensional analytic space and let S be

a coherent analytic sheaf on X that is generated by S (A). // #(S, x) 5= n

for every xQX, thenG(S, n(d + l),X) is a dense residual set in S(A)n(d+1);

in particular, it is not empty.

The theorem follows from a series of lemmas.

2. Lemma. Let X be a complex analytic space and let S be a coherent

analytic sheaf on X. If U is an Oka-Weil domain in X [l, p. 211] and
K is a compact 0(U)-convex subset of U, then G(S, n, K) is open in

§>(X)n, for each positive integer n.
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Proof. Suppose h, • • • , i»GS(X) generate &\K. Then K has an

open neighborhood VQ U that is also an Oka-Weil domain such that

h, ■ ■ ■ ,tn generate s| V [l, pp. 211 and 244]. Identify CnXn with the

space of nXn complex matrices, and let £: 0"X"| V—»Sn| V he the

map defined by E(f) = (2^,jfijtj, • ' ' > 2~lifnjlj)- Then £ is a homo-
morphism of coherent sheaves. Ker £ is a coherent sheaf, and by

Cartan's Theorem B, ^(V, Ker£)=0. Since h, • • ■ , tn generate

S| V, the sequence 0^H°(V, Ker E)-+H*(V, enX")-+H°(V, S)-»0 is

exact. That is, £: 0(V)nXn^>S(V) is a surjection. £ = {fEO(V)nXn:f(x)

is an invertible matrix for each xEK} is open in 0(V)nXn, since the

topology of Q(V)nXn is that of uniform convergence on compacta [l,

p. 237], and the set of invertible matrices is open in CnX". It follows

from the Open Mapping Theorem for Fréchet spaces that E(R) is

open in §>(V)n. Since rXv is continuous, rXy(E(R)) is open in S(X)n.

But if sE$(X)n and rXv(s)EE(R), then 5 generates s| V. Thus

G($, n, K) contains a neighborhood rxv(E(R)) of t.

3. Lemma. Let X be a complex analytic space, S a coherent analytic

sheaf on X, and Si, • • • ,snE&(X). Then Y = [y EX : Si(y), • • ■ , sn(y)

do not generate S(y)} »5 an analytic subvariety of X.

Proof. Let 3 be the subsheaf of S generated by Si, ■ • • , s„. Then

Fis the support of the coherent analytic sheaf S/3 [3, p. 87].

4. Lemma. Let X be a complex analytic space, let xEX, and let S

be a coherent analytic sheaf on X such that &(X) generates S(x). Let

»2ï#(S, x). ThenG(S,n, {x}) is dense in §>(X)n.

Proof. Since S(X) generates S(x) and «è#(S, x), we can choose a

tE&(X)n that generates §(x). Let s be any element of S(AT)\ Say

Si(x) = 2^ijcijlj(x)< where the matrix-valued function c is analytic in a

neighborhood of x. Then s(x)— \t(x) = (c— \I)t(x), so that 5—Xi will

generate §(x) provided that the matrix c— X7 is nonsingular in a

neighborhood of x. This will be true if X is distinct from each of the n

eigenvalues of the matrix c(x). There are arbitrarily small numbers X

with this property. Hence there are sections 5— X/ of §(X)n arbitrarily

close to j that generate §>(x).

5. Lemma. Let X be a d-dimensional complex analytic space, let S be

a coherent analytic sheaf on X, and let K be a compact subset of X. Sup-

pose that S(X) generates s| K and that «è#(S, x) for each xEK. Then

G($, n(d+l), K) is dense in S(X)«d+1K

Proof. Let A he a nonempty open set in S(X)"(á+1). Then A con-

tains a nonempty open set of the form AiX • • • X^4<j+i, where .4,-
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is open in §(X)n for i= 1, • • -, ¿ + 1. Suppose that O^k^d + 1. Let

us show that for each i such that l^i^k, we can choose a section

siQAiwiththeio\\owingproperty.hetYk= {xQX: (s1(x), • • • , sk(x))

does not generate $(x)}. (Yk is a variety by Lemma 3.) Then no irre-

ducible branch of Yk of dimension greater than d — k intersects K.

The proof is by induction on k. For k=0, Y0 = X and there is

nothing to prove. Suppose we have chosen sl, • ■ • , sh so that no

irreducible branch of Yk of dimension greater than d — k intersects K.

Let Bi, ■ ■ ■ , Bp be the irreducible branches of Yk which do intersect

K. Since S is coherent, there is actually a neighborhood U of K such

that #(S, x)^n for each xQ U. Therefore, for each /=1, • • • , p, we

can choose a regular point XjQB¡ such that #(S, x3)^re. Then D¡

= \sQ§(X)n:s generates §>(xj)} is open (Lemma 2) and dense

(Lemma 4) in S(X)\ Choose sk+1 in ¿¡t^nZV^ • • ■ C\DP. Then

no (n — k)-dimensional branch of Yk+i can intersect K.

In particular, (s1, • • • , sd+1) is an element of A such that Yd+i(~\K

= 0, or in other words, (s1, ■ ■ ■ , s*"") is an element of A that gener-

ates S | K.

Proof of Theorem 1. Express X as the union of countably many

compact subsets Ki, A2, K3, • • • , each of which is contained in an

Oka-Weil domain in which it is holomorphically convex. According

to Lemmas 2 and 5, G(S, w(d + l), K,) is open and dense in S(X)"id+1)

for each/=1, 2, 3, • • • . Therefore,

00

G(S, n(d + 1), X) = D G(i, n(d + 1), K,)
3=1

is a residual set in S(A)n(d+1). Since S(A)"(d+1) is a Fréchet space, the

Baire Category Theorem shows that G(S, «(¿ + 1), X) is dense in
S(X)»em>.

6. Corollary. 7/ X is a d-dimensional analytic space and B is a

n-dimensional vector bundle over X which is generated by its global sec-

tions, then B is generated by n(d + l) of its global sections.

If A is a Stein space, every coherent sheaf on X satisfies condition

(A), according to Cartan's Theorem A [l]. At least when X is an

open subset of a Stein manifold, the converse is also true. Indeed, in

this case X satisfies the hypotheses of the following proposition, ac-

cording to Rossi [4].

7. Proposition. Let X be an analytic space with the following

properties.
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(a) X can be embedded as an open subset of a Stein space Y in such

a way that the restriction map r: 6( Y)—+6(X) is bijective.

(h) Whenever S is the sheaf of ideals of a O-dimensional variety in X,

S(X) generates S.

Then X is a Stein space.

Proof. It will be enough to show that X = Y. If Xj¿ Y, there must be

a component C of Y which is not contained in X. However, CC\X

cannot be empty since the restriction 0( Y)—>Q(X) is injective. There-

fore, there must be a y on the boundary of CC\X with respect to C.

Let {x„} be a sequence in CC\X converging to y, and let S be the

sheaf of ideals of \xn} over X. Let Z={xEX:f(x)=0 for each

fE§>(X)}. It will be enough to show that Z has dimension greater than

0, for then we will have contradicted the hypothesis that S is gener-

ated by its global sections. Since r is a bijection, we can form W

= {wEY: (r-1/)(w) =0 for each fE&(X)}. Clearly, PF is a subvariety

of Y and WC\X = Z. Since y is an accumulation point of Z, dimv(W)

;¿0. If the irreducible branches of W passing through y are Bx,

■ ■ ■ , Bp, at least one of them must contain infinitely many points of

Z, Bi let us say. But then dim 5i>0, and dim Z^dim Bi.

8. Proposition. Let M be a 2-dimensional complex manifold and let

f: 0n—>Ombe an Q-homomorphism. Then for every xEM, #(Ker/, x) ^n.

Proof. Consider the exact sequence (Ker/)(x) —>0(x)"-£>0(x)m

—>0(x)m/(lm/)(x) —»0. According to the Hubert Syzygy Theorem

[l, p. 74], (Ker/)(x) is a free 0(x)-module. Since (Ker/)(x) is a free

submodule of 0(x)n, #(Ker/, x) i£«. (The field of quotients Q of 0(x),

being the direct limit of copies of 0(x), is a flat 0(x)-module. Thus the

sequence 0^>Q®e(x)(Kerf)(x)—*Q®e(x)e(x)n is exact. But Q®6(x)n

is an ra-dimensional vector space over Q, and Q <g> (Ker/) (x) is a vector

space over Q oí dimension #(Ker/, x).)

9. Corollary. Let M be a 2-dimensional Stein manifold. If I and J

are finitely generated ideals in the ring of holomorphic complex-valued

functions on M, then ICMis also finitely generated.

Proof. The following proof was suggested to me by Lance Small.

Let au ■ • • , an be generators for /, and let bi, • • • , bm he generators

for /. Let é and $ be respectively the subsheaves of 0 generated by /

and /. According to Cartan's Theorem B, I = 3(M), J = $(M), and

IC\J= (äf~\$)(M). Thus it will suffice to prove that 3C\g is generated

by finitely many of its global sections. In fact, it will be shown that
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f(âf\g, x) ^n+m for every xQM, and hence that IC\J is generated

by 3(n+m) of its elements according to Theorem 1.

Let /: ©n+m—>6 be the map defined by f(ci, • • ■ , cn+m)=c1ai

+ • ■ • +cnan—cn+ibi— ■ • ■ —cn+mbm. Then #(Ker/, x)^n+m for

every xQM by Proposition 8. But the formula ir(ci, • • • , cn+m)

= ciai+ • • • +c„an evidently defines a surjection ir: Ker/—>¿P\¿J.

It follows that §(âC\$, x) g#(Ker/, x)^n+m for every xQM.

I do not know whether Corollary 9 would remain true if the condi-

tion of 2-dimensionality were dropped. I conjecture that it would not.

In one dimension, the corollary is trivial since every finitely generated

ideal is then principal.

10. Example. The bound n(d+l) is the best possible if the density

of tr(S, n(d + l), X) in 6(X)n<d+» is to be preserved.

Consider, in the complex plane 6, the subsheaf S of 0 generated by

the coordinate function z. Although one global section suffices to

generate S, every section in a neighborhood of the section z2 has two

zeros in 6, and therefore fails to generate S.
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