
A NOTE ON DERIVATION PAIRS

N. R. NANDAKUMAR

1. Introduction. Let G be a region in the complex plane and H(G)

denote the vector space of functions analytic on G. Let L and M he

two linear functionals on H(G). The pair [L, M\ is a derivation pair

if

(1) L(fg) = L(f)M(g) + L(g)M(f),      f, g Q H(G).

The purpose of this paper is to determine all derivation pairs

generalising a result of L. A. Rubel [l]. This incidentally answers a

question raised by him viz., whether the functionals satisfying (1)

are continuous.

We denote by I the identity function and P will then denote the

function defined by P(z) =7(z)2. Throughout we assume {L, M] to

be a derivation pair and L^O.
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Theorem. Let {L, M} be a derivation pair. Then one of the following

is true:

(i) there exists a ZiQG such that

L(f) = L(l)f(zi), M(f) = hf(zi), f Q H(G) ;

(ii) there exists a ZiQG such that

L(f) = L(I)f'(zi),   M(f)-f(zi),        fQH(G);

(iii) there exists Z\, ztQG (zit^z2) such that

L(I)
L(f)-— (f(zi) - f(zt)),   M(f) = è(/(2i) + /(«,)),      / Q H(G).

2i — Z2

2. Lemmas.

Lemma 1. If N is a multiplicative linear functional on H(G), then

there exists a z0QG such that N(f) =f(zo),   fQH(G).
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The proof of the above lemma is simple and we include it for the

sake of completeness.

Proof. Since N is multiplicative we have N(f)=N(f)N(l) which

implies N(l) = l. Let N(I)=z0 so that N(I-z0)=N(T)-zaN(l)=0.

We now claim that this So will satisfy our requirement. First we show

that zoEG. Suppose not. Then 1/(1 — z0)EH(G) and

which is impossible.

Now let fEH(G). Consider the analytic function g defined by

(I—z0)g=f—f(zo). Applying N to the function (I—z0)g we obtain

0 = N(f) - N(f(z0)) or N(f) =/(z0). This completes the proof of lemma.

Lemma 2. If £(1)^0, then L/L(l) and 2M are multiplicative.

Proof. By (1) it follows that £(1) =2£(l)Af(l) so that M(l)=\.
Then again using (1) it is easy to show that

M(f) = L(f)/2L(l),      fEH(G).

Substituting this value of M in (1) the result follows.

When £(1)=0, we have L(f)=L(f)M(l) and since L^O, this
implies that M (I) = 1.

Lemma 3. Let \L, M\ be a derivation pair and suppose L(l)=0.

Then

(a) L(I)*0.
(h) M is multiplicative when M(P) = M(I)2.

(c) If f is defined at z0 and fEH(G), then

L(f) = L(I)M (y^YV,      / G H(G),

where z0 = M(I).

Proof, (a) Suppose £(7) =0. Let M (I) =z0. If z0<$G, and/G7i(G),

define f(z0) =0. For all fEH(G), (f-f(z0))/(I-z0)EH(G) so that

L(f) = L(f - f(z0)) - l((I - z0)f-Ç^)
\ I - z0 /

= L(I)M (LJQ)\ = 0)       / E E(G).
\ I — So /

Hence £ = 0 which is a contradiction. This proves (a).
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(b) Using (1) we obtain on the one hand

L(Pf) = L(P)M(f) + L(f)M(P) = 2L(I)M(l)M(f) + L(f)M(I)*

and on the other,

L(Pf) = L(I-If) = L(I)M(If) + L(If)M(I)

= L(I)M(If) + L(I)M(I)M(f) + L(f)M(I)\

Comparing the two expressions for L(Pf) and noting that L(7)^0,

we get M(If) = M(I)M(f), fQH(G). From this relation it is easy to

show (as in Lemma 1) that there exists a ZoGG such that M(f) =f(z0),

fQH(G). This implies M is multiplicative.

(c) (/-/(zo))/(7-z0)G77(G)and

L(f) - L(f-f(z0)) = l((I- Zo) v^)
\ 7 - Zo /

,UI-,,)M(ízM) + u(I_,,)L(fzM)
\ 7 — zo / \ 7 — zo /

\ 7 — z0 /

since L(l) =0 and ikf(7-z0) =0.

This completes the proof of lemma.

Now if/, g G 77(G) and are defined at z0, then applying (c) to L(fg),

L(f) and L(g) and substituting in (1) we get

g/ft-JWiWX   um(LzM)
\      I - zo      / \ I - zo I

\ 7 — Zo /

Put/=72-z07,

g = 1/(7 - Zl)        (2l C G, 2l ^ zo).

On noting that 7/(7 —zx) = l+Zi/(7—Zi), (2) simplifies with these

special values to

/     1     \ (M(P) - zo )
(3) M[--)\-!l-L-- + z0-zS=l.

\I — zi/ 1    zi — z0 )

3. Proof of theorem. Case (i). L(1)^0. Then 7,/7,(1) is multiplica-

tive by Lemma 2. By Lemma 1, there exists ZiGG such that L(J)/L(1)
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«/(*), fEH(G). Also M(f)=£(f)/2£(l)=/(zi)/2, fEH(G). This
gives (i) of our theorem.

Case (ii). £(1) = 0. We have two possibilities M(P) = M(I)2 or

M(P)y£M(iy.
If M(P) = M(I)2, then M is multiplicative by Lemma 3. Apply

Lemma 1 to get ZiEG such that M(f) =/(zi), fEH(G). Now we will

prove L(f)=L(I)f'(zi). Recall that M(I)=zi. Since Zi£G, it follows

that (f-f(zi))/(I-zi)EH(G) for all f EH(G) and then, by (1) and
£(1) = 0,

LU) = L(f - f(zi)) = L((I - zi)(f-f(zi))/(l - zi))

= L(I)M((f-f(zi))/(I - zx)) = L(I)f(zx)

and we obtain (ii) of our theorem.

It remains to consider the case when M(P)¿¿M(iy=z\ and

£(7) = 0.
Since M(P)—z209iO, there are two distinct roots, Zi and z2 say, of

(M(f) - zl)/(z -z0)+z0-z = 0.

These roots satisfy

2 2
Zx + z2 = 2zo,       Ziz2 = 2z0 — M (I ),

so that

(4) M {(I - zi)(I - z2)} = M(P) - (zi + z2)M(I) + ziz2M(l) = 0.

Also by (1), (4) and£(l)=0,

(5) L{(I - zi)(l - z2)} = L(I)M(I - z2) + L(I)M(I - zi) = 0.

ZxEG, since otherwise M(l/(I—zi)) would be finite, contradicting

(3). Similarly z¡EG.
We can now prove that we have case (iii) of the theorem.

Let fEH(G). Then

I — ZïL I — zi ¿2 — zi   J

Applying (1), (4), and (5) to

(/ - zx)(l - z2)g =-[(z2 - 2l)(/-/(Zl))- (/ - zi)(f(z2) -f(zx))].
Z2 — Zi

We obtain
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L(f) = —9- [f(zi) - /(z2)],      / G 77(G).
Zl — z2

From the relation L((I-z0)f)=L(I)M(f), fQH(G), we obtain M(f)

= è(f(zi)+/(z2)), /G77(G). The theorem is completely proved.
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