A CHARACTERIZATION OF CERTAIN CONFORMALLY
EUCLIDEAN SPACES OF CLASS ONE

G. M. LANCASTER

1. In this paper we will examine the metrics of conformally
Euclidean spaces C, (z=4) having the following two properties:

(1) They are locally and isometrically imbeddable in Euclidean
space of one higher dimension (Z£,41), i.e. they are of class one.

(2) With respect to a conformal coordinate system, the matrix of
the second fundamental tensor [b;;] has diagonal form.

The condition for class one is that there exist a (second funda-
mental) tensor [b;;], satisfying the Gauss (1.1) and Codazzi (1.2)
equations:

(1.1) Rpije = brjba — bmbij,
(1.2) bije = bir,;.

To satisfy (2), we will therefore look for a solution of these equa-
tions for which b;;=0 when 75j.

Sen, in a series of papers ([4], [3] and [6]), has investigated certain
conditions for a C, to be of class one, and obtained [6, Theorem 3] a
canonical form for the metric of such a space. His result, however, is
incorrect in its full generality (see [3] for a disproof). In 1962, at the
meeting of the International Congress of Mathematicians in Stock-
holm [8], R. Blum presented, without proof, a canonical form for the
metric of a C, satisfying (1) and (2) above and such that n=4. In his
theorem, however, Blum overlooked an exception, and it is therefore
not correct as stated. It is the purpose of this paper to give a proof
and a simplification of the corrected result.

Thomas [7] showed that when 7, the rank of the matrix [b;], is
greater than or equal to four, equations (1.2) follow as a consequence
of equations (1.1). It is therefore logical to consider separately the
cases #=4 and =23 (the case n=2 is not considered here; the sur-
faces C, are called isothermal surfaces and form a separate area of
study in themselves). It will turn out that for n=4, 7 is greater than
or equal to four except in two particular cases. In both, however, it is
easily verified that equations (1.2) are satisfied because of (1.1). For
n =3, the situation is somewhat different and the Codazzi equations
must be considered separately as a set of independent conditions.
This case will be the object of investigation in a later paper.
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As regards notation, a C, having property (1) will be denoted Cj,
following Sen's example, while a C, which has both properties (1) and
(2) will be denoted C,. Tensor notation used throughout will be essen-
tially that to be found in Eisenhart [2].

2. Referred to a conformal coordinate system, the metric of a C, is
(2.1) ds? = e Y (dx?)?,

where ¢ =0(x), x2, - - -, x") and e270.
By routine calculation we then obtain the following expression for
the Riemann Curvature Tensor:

20 2
R = € [5hk0ij + Sisom — Snjoir — duon; + 2 .m(Bndi — 5hk5ij):|
m
where ¢;;=0,;;-+0,0 ;, and 0,;; (the second covariant derivative of ),
is given by
2
0,5 = a,»a,v - 20',,'0',;,' + 8,‘,‘ Z O ,m.
m

Substituting this expression into (1.1) and considering components
yields the following two equations:

2.2) g;; =0 G#g5=1,--,mn),
and

(23) brrbiz = e%( Z U'?m — Ohh — 0"',') (h # ’L; h, 1= 1, ceey n)-

We will now consider each of these relations in turn.
3. Equation (2.2) simplifies to

0:0;0 — 0000 =0 (i 5 7).
If we now multiply this by e~ we obtain

3:9;e° =0 G ;éj).

Thus

9;¢ = F(x9) G=12---,m),
and hence
(3.9) e =2 fn

where £, is a function of x™ only.
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4. Utilizing equation (3.1), (2.3) reduces to

(4.1) banbie = e*[e(fi’ + fi') — A] (B # k),
where

(4.2) 4= fm

Similarly

(4.3) bubii = e*le(fI' +f') — A] (i #j).

Multiplying (4.1) and (4.3) we obtain
banbirbisbs; = e le2(fi’ + f")(fI + 1)
— A+ f A+ 4]
(B #= ki 5£7),

(4.4)

and similarly:
bunbibixbs; = e [e=>(fi" + fI" Y + 117
—Ae(fi’ + 1+ 1+ 1)+ A2
(h #i, k # 7).

(4.5)

Equate (4.4) and (4.5) and simplify. Then
F =G —f')=0  (@#Ehi*jk#*j,k=h).

From this expression, we then deduce the result that f;’ =2a (con-
stant) for all 7 except one value, say 2=1. Thus

(4.6) fi= ax” + bt + ¢; E=2,3,---,n)
while f; is arbitrary.

Putting f=fi+ D &, ¢; and substituting (4.6) and (3.1) into (2.1)
we thus obtain

> (daiy?

=1

“.7 dst = - - ol
767+ 0 3 92+ 3 bam

It is then a fairly straightforward matter to obtain explicit expres-
sions for the b;; from equation (4.3), viz

n 1/2
(48) b= e"’(4af—f" - Ebf,.) (G=23--,n),
m=2
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and

b= bt o T2 0 )
=byt+———— by g )
4.9) " bii

=0 ifby =0 (i5#1).
However, there is an interesting exception which arises when

bii=0 (=2, - - -, n) and ¢ 0. If we equate equation (4.8) to zero
and solve, we obtain the following two independent solutions:

(1) H&) = ant 4 bt + 0 B /da,
(2) flx) = ﬁ;bﬁ,/zxa.

Solution (1) implies that C, is a Euclidean space and hence b;; =0
also, as indicated in equation (4.9).

Solution (2), however, yields a contradiction to the effective Gauss
equations (4.1), and hence represents a space which is not a Cs.. We
may see this by direct substitution into equations (4.1);

hyi# 1 yields 4ae”— A4 =0,
h=1,i%1 yields 2¢e7°— 4 =0,

and together these imply e~7=0, i.e. a contradiction.

Furthermore, the space C,, whose metric is given by equation (4.7)
with f(x1) = D% _, b2/4a, is not even of class one, i.e. a C. This may
be seen by obtaining the components of the curvature tensor from
this metric and looking for a solution [b;;], not necessarily diagonal,
to equations (1.1). A contradiction is thereby obtained. The space is
in fact of class two (see [1]).

Thus to equation (4.7) we must add the condition that f(x!)
# Za-z by/4a.

5. The Codazzi equations follow because of Thomas’ result, except
for the following situations:

(@) bu=b;=0 (=2, - -, n), in which case they are satisfied
identically.
(b) bu=0, by#0 (=2, - - -, n), and n=4. This situation occurs

when b}, =¢€%(2a—f"") (i=2, 3, 4) (f""#2a), and f satisfies the differ-
ential equation

4 4
fU" +20) — 7+ (" — 20) 2, (aa™" + bur™) — 3 b% = 0.
M2 M2
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It can be fairly readily verified that here again the Codazzi equa-
tions are satisfied (by converting these equations to the simpler form

Obis = o x(bis + bix) (T#k)
and checking all the cases).

6. Conversely, if we are given a C, with metric (4.7), and f(x!)
# Y " _,b2/4a, we may construct a tensor [b;;] using equations (4.8)
and (4.9) such that b;;=0 for 5. These in turn satisfy the Gauss
and Codazzi equations. Furthermore, the tensor [b;;] is unique except
for sign provided that rank [b;;] (=7)=3 (see [7, p. 188]). This is
always true unless C, is a Euclidean space (in which case it is of class
zero anyway).

7. We can further simplify the metric (4.7) by considering sepa-
rately the cases when ¢ =0 and a 0.

a#0. The transformation y'=ax?, y*=ax"+b,/2 (m=2,3, - - -,
n) changes the metric to the simpler form

2 (@y? .
71) ds?=————— where §=2.(y)? and F(y) 0.
(1.1) ds Foy T ap e é(y) and F(y!)
a=0. Hereif b, (m=2, 3, - - -, n) are all zero, we obtain the metric

3 (daiy?

[fe)]:

whereas if the b,, are not all zero, we may make any orthogonal trans-
formation such that

ds? =

y1 = xl, yz = Exm, where B = (bs+ b3+ - - - + by)172,

and obtain the metric

2 (dy)?
=1
16" + By
Thus in both cases when a=0, the metric of a C} reduces to the
form

ds?
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n

2 (dx)e

" [ + ke

where K is an arbitrary constant.

(1.2) ds?

8. The following theorem summarizes the results obtained in the
preceding sections:

THEOREM. Let Cy (n=4) be a conformally Euclidean space of class

one, such that, with respect to a conformal coordinale system x!, x2,

-, x*, the second fundamental tensor has diagonal form. Then the
metric of Ch takes one of the following two distinct canonical forms:

> ,,
(@) ds? = m where 0§ = é (x%)2,
> (@
(IT) ds? =

T oG + ka2

where f and g are arbitrary twice differentiable functions of x' only, ex-
cept that f(x*) #0, and K is an arbitrary constant.
Conversely, if a C, (n=4) possesses either of the metrics (1) or (1I),
then it is a C..
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