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1. In this paper we will examine the metrics of conformally

Euclidean spaces Cn (n^A) having the following two properties:

(1) They are locally and isometrically imbeddable in Euclidean

space of one higher dimension (£n+i), i.e. they are of class one.

(2) With respect to a conformai coordinate system, the matrix of

the second fundamental tensor [èy] has diagonal form.

The condition for class one is that there exist a (second funda-

mental) tensor [e¿y], satisfying the Gauss (1.1) and Codazzi (1.2)

equations :

(1.1) Rhijk = bhjbik — bubij,

(1.2) bij,k = bik,j.

To satisfy (2), we will therefore look for a solution of these equa-

tions for which bij = 0 when tVj.

Sen, in a series of papers ([4], [5] and [6]), has investigated certain

conditions for a C, to be of class one, and obtained [6, Theorem 3 ] a

canonical form for the metric of such a space. His result, however, is

incorrect in its full generality (see [3] for a disproof). In 1962, at the

meeting of the International Congress of Mathematicians in Stock-

holm [8], R. Blum presented, without proof, a canonical form for the

metric of a C„ satisfying (1) and (2) above and such that w = 4. In his

theorem, however, Blum overlooked an exception, and it is therefore

not correct as stated. It is the purpose of this paper to give a proof

and a simplification of the corrected result.

Thomas [7] showed that when t, the rank of the matrix [¿>y], is

greater than or equal to four, equations (1.2) follow as a consequence

of equations (1.1). It is therefore logical to consider separately the

cases n 2; 4 and n — 3 (the case n = 2 is not considered here ; the sur-

faces C\ are called isothermal surfaces and form a separate area of

study in themselves). It will turn out that for w^4, r is greater than

or equal to four except in two particular cases. In both, however, it is

easily verified that equations (1.2) are satisfied because of (1.1). For

n = 3, the situation is somewhat different and the Codazzi equations

must be considered separately as a set of independent conditions.

This case will be the object of investigation in a later paper.
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As regards notation, a C„ having property (1) will be denoted C¿,

following Sen's example, while a Cn which has both properties (1) and

(2) will be denoted C\. Tensor notation used throughout will be essen-

tially that to be found in Eisenhart [2].

2. Referred to a conformai coordinate system, the metric of a C„ is

(2.1) ds2 = e2" }Z (dxiy,
i

where cr = o"(x1, x2, • • ■ , x") and e-2a?¿0.

By routine calculation we then obtain the following expression for

the Riemann Curvature Tensor:

2a P ^-,      ¡2 ~]
Rhijk   =   e ÔhkOij + hijCThk — ShjVik — OikGhj +   2-1 <T,m(8hidik  —  O'hkO'ij)

where Oij = a,a+o,¿o-¿, and o*,¿y (the second covariant derivative of a),

is given by

<r,ii = didjtx — 2<r,i<r,j + 5,j ¿_, <r,m.
m

Substituting this expression into (1.1) and considering components

yields the following two equations:

(2.2) <ry = 0        (i9*j\j = 1, ■ ■ •,«),

and

(2.3) bhhba = e   Í 2^ o-,m — afth — <r„ J     (h j¿ i; h, i = 1, • • • , n).

We will now consider each of these relations in turn.

3. Equation (2.2) simplifies to

did ¿a — diO-djcr = 0 (i 9e j).

If we now multiply this by e~" we obtain

didje-' = 0       (i^j).

Thus

dse-' = F(xi)       (j=l,2,-..,n),

and hence

(3.1) e~" = 2ZU
m

where/m is a function of xm only.
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4. Utilizing equation (3.1), (2.3) reduces to

(4.1) bhhbkk = el'[e-'(fi' + /*") - A]        (h^k),

where

(4.2) A = 2Zl'l
m

Similarly

(4.3) bubjj = e"[e-'(j'i' +//')- A]       (i*j).

Multiplying (4.1) and (4.3) we obtain

bkkbkkbubjj = e*°[e-2°(fl' +fkn)(fï +//')

- A e-(ji' +fl' +//' + //') + A2]

(h*k,i*j),

and similarly:

ÔwiM**^ = e*°[e-2°(fV + //')(/*" +//')

- ¿«-(A" + //'+/*"+//0 + ¿2]

(k * i, k * j).

Equate (4.4) and (4.5) and simplify. Then

(// ' - /*")(//' - A") = o     (i*h,i* j, k^j,k^ h).

From this expression, we then deduce the result that /" = 2a (con-

stant) for all i except one value, say i = 1. Thus

(4.6) fi = ax{* + bixi + d       (i = 2, 3, ■ ■ • , n)

while/i is arbitrary.

Putting/=/i+ £?_ac< and substituting (4.6) and (3.1) into (2.1)

we thus obtain

¿ (dx<y

(4.7) ds2 =

f(xl) + a ¿ (xm)2 + ¿ bmxA
m=2 m=2 J

It is then a fairly straightforward matter to obtain explicit expres-

sions for the bu from equation (4.3), viz

(4.8) bu = e* Uaf -f - ¿ ¿l) (i = 2, 3, • • • , n),
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and

ez°(f" _ 2a)
,    N *ii-&« + —-       ifô.-.-^O    (i^l),
(4.9) J«

= 0       if 6« = 0    (i* 1).

However, there is an interesting exception which arises when

bu = 0 (i — 2, •••,«) and a¿¿0. If we equate equation (4.8) to zero

and solve, we obtain the following two independent solutions:

2 n

(1) f(x ) = ax    + bix + 2~1 bm/Aa,
m=l

(2) f(x) = ¿ bl/Aa.
m—2

Solution (1) implies that C„ is a Euclidean space and hence &u = 0

also, as indicated in equation (4.9).

Solution (2), however, yields a contradiction to the effective Gauss

equations (4.1), and hence represents a space which is not a C\. We

may see this by direct substitution into equations (4.1);

h,i 7a 1    yields   Aae-" —4=0,

h = 1, i ■£ 1    yields    2ae~" - A = 0,

and together these imply e~" = 0, i.e. a contradiction.

Furthermore, the space Cn, whose metric is given by equation (4.7)

with /(x1) = 2~lm=2 °m/Aa, is not even of class one, i.e. a C¿. This may

be seen by obtaining the components of the curvature tensor from

this metric and looking for a solution [6,-,-], not necessarily diagonal,

to equations (1.1). A contradiction is thereby obtained. The space is

in fact of class two (see [l]).

Thus to equation (4.7) we must add the condition that /(x1)

* ZU bl/Aa.

5. The Codazzi equations follow because of Thomas' result, except

for the following situations:

(a) bn = ba = 0 (i = 2, • • • , »), in which case they are satisfied

identically.

(b) 6n = 0, buT^O (i = 2, •••,«), and » = 4. This situation occurs

when bl = e3"(2a-f") (i = 2, 3, A) (f"*2a), and / satisfies the differ-
ential equation

f(f" + 2a) - f + (f" - 2a) ¿ (ax™* + bmx") - ¿ b\> = 0.
m=2 m=2
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It can be fairly readily verified that here again the Codazzi equa-

tions are satisfied (by converting these equations to the simpler form

dkbu = o-,k(ba + bkk)        (i 5^ k)

and checking all the cases).

6. Conversely, if we are given a C„ with metric (4.7), and f(xl)

7a £m-2 ¿>m/4a, we may construct a tensor \bi¡\ using equations (4.8)

and (4.9) such that bij — 0 for i^j. These in turn satisfy the Gauss

and Codazzi equations. Furthermore, the tensor [&,j] is unique except

for sign provided that rank [b{j] (=t)^3 (see [7, p. 188]). This is

always true unless C„ is a Euclidean space (in which case it is of class

zero anyway).

7. We can further simplify the metric (4.7) by considering sepa-

rately the cases when a = 0 and a ^ 0.

a^O. The transformation y1 = ax1, ym = axm+bm/2 (m = 2, 3, • • • ,

n) changes the metric to the simpler form

t (dy)2

(7.1)    ds2 = —^-^-   where   0 = ¿ M2    and    F(yl) ¿¿ 0.
[F(y)+0]2 «

a = 0. Here if bm (m = 2, 3, • • -, n) are all zero, we obtain the metric

£ (dx*)2

ds2 =   '
[fix1)]'

whereas if the bm are not all zero, we may make any orthogonal trans-

formation such that

11 2 ^-i   bm    m 2 2 2
y  = x ,       y  = 2^ —x ,   where   B = (b2 + b3 + ■ ■ ■ + ô„)1/2,

m-2    B

and obtain the metric

ds2 =

Z (<¥)2
¿=1

W)+~Bf\2

Thus in both cases when a = 0, the metric of a Cj reduces to the

form
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(7.2) ds2 = —-^-r
[[(x1) + Kx2]2

where K is an arbitrary constant.

8. The following theorem summarizes the results obtained in the

preceding sections:

Theorem. Let C\ («^4) be a conformally Euclidean space of class

one, such that, with respect to a conformai coordinate system x1, x2,

■ • • , x", the second fundamental tensor has diagonal form. Then the

metric of C¿ takes one of the following two distinct canonical forms:

¿ (dx<y
'    1 n

(I) ds2 = —-   where   6 = Y. (x'')2,
[/(x1) + e]2 tí

¿ (dx<y

(II) ds2 =
[g(x') + Kx2]2

where f and g are arbitrary twice differentiate functions of x1 only, ex-

cept thatf(xx) ¿¿0, and K is an arbitrary constant.

Conversely, if a Cn (n^A) possesses either of the metrics (I) or (II),

then it is a C^.
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