SOME REMARKS ON HYPERSPACES

RAYMOND Y. T. WONG¹

1. The purpose of this paper is to answer a question of R. Schori [3] and to provide simpler arguments for some generalizations of Schori's results.

If X is a metric space, the hyperspace of X, denoted 2^X , is the space of all nonvoid closed subsets of X with the usual Hausdorff metric. The n-fold $(n \ge 1)$ symmetric product (Borsuk-Ulam [1]) of X, denoted X(n), is the subspace of 2^X consisting of all elements with $\le n$ points. Let I denote the closed unit interval, I^n the n-cube and I^∞ the Hilbert cube. Let S(X) denote the subspace of 2^X consisting of all continua. In [3] R. Schori shows that for $n \ge 1$ and $\alpha = \infty$, 1, 2, \cdots , $I^{\alpha}(n)$ contains I^{α} as a factor; that is, $I^{\alpha}(n)$ is homeomorphic to $Y \times I^{\alpha}$ for some space Y. Let I^{∞} denote another copy of the Hilbert cube with I = [-1, 1] and let I0 be the equivalence relation on I^{∞} defined by identifying each I^{∞} 0 with I^{∞} 1 with I^{∞} 2 defined by identifying each I^{∞} 3 with I^{∞} 4 with I^{∞} 5 with I^{∞} 6 defined by identifying each I^{∞} 6 with I^{∞} 7 with I^{∞} 8 defined by identifying each I^{∞} 9 with I^{∞} 9 with I^{∞} 9 with I^{∞} 9 defined by identifying each I^{∞} 9 with I^{∞} 9 with I^{∞} 9 with I^{∞} 9 with I^{∞} 9 defined by identifying each I^{∞} 9 with I^{∞} 9 wit

THEOREM I. J^{∞}/R is not homeomorphic to J^{∞} .

Thus we settle a question of R. Schori [3].

PROOF. Let us suppose it were. Consider the natural quotient map $P: J^{\infty} \to J^{\infty}/R$. Evidently the restriction of $P: J^{\infty} - 0 \to J^{\infty}/R - P(0)$ is a two-fold covering. Since the Hilbert cube is homogeneous, it follows from the assumption that $J^{\infty}/R - P(0)$ is simply connected and therefore (well-known) does not admit a two-fold covering. This is a contradiction.

Question. Is J^{∞}/R an Absolute Retract?

The question is interesting because J^{∞}/R is clearly a retract of $J^{\infty}/R \times J^{\infty}$, which is homeomorphic to $J^{\infty}(2)$ by [3]. A negative answer would imply that $J^{\infty}(2)$ is not homeomorphic to J^{∞} .

THEOREM II. Let m, n be positive integers. If $X = I^m(n)$, $2^{(I^m)}$ or $S(I^m)$, then X contains I^m as a factor.

REMARK. Schori's proof is restricted to symmetric products since it makes strong use of the following well-known characterization of $I^m(n)$. If n is a positive integer, then $I^m(n)$ is homeomorphic to I^m/R where R is the equivalent relation on I^m defined by (x_1, \dots, x_n)

Received by the editors June 17, 1968.

¹ Research supported in part by the National Research Council and the Office of Naval Research Grant ONR:432:LDB:lcd.

 $R(y_1, \dots, y_n)$ iff $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\}$ $(x_i \text{ and } y_i \text{ are points in } I^m)$. However, as such he is able to include the case when $m = \infty$ in his theorem. On the other hand, by working directly with the subspaces of 2^{I^m} we are able to give a much simplified proof and although we are not able to include $m = \infty$, we generalize in the direction of more general subspaces of 2^{I^m} which, as the nature of the technique, may include even more subclasses than those mentioned in Theorem II. In the case when $m = \infty$ we are able to prove the following partial generalization:

THEOREM III. If $X = I^{\infty}(n)$, $S(I^{\infty})$ or $2^{I^{\infty}}$, then for any positive integer k, X contains I^{k} as a factor.

Question. If $X = S(I^{\infty})$ or $2^{I^{\infty}}$, must X contain I^{∞} as a factor?

2. The Cone Lemma. The *cone* over a space X, denoted C(X), is the quotient space of $X \times I$ obtained by identifying $X \times 1$ as a point v, where v is called the vertex of C(X). Inductively for n > 1, define $C^n(X) = C(C^{n-1}(X))$. Let " \approx " denote "homeomorphic to".

LEMMA. (SCHORI). For n > 1, $C^n(X) \approx C(X) \times I^{n-1}$.

OUTLINE OF PROOF. By induction it suffices to consider n=2; that is $C^2(X) \approx C(X) \times I$. For each $x \in X$, $C^2(x)$ can be realized as a triangle and thus we can deform $C^2(x)$ into $C(x) \times I$. If we do this uniformly for each x (detail in [3]), we obtain a homeomorphism from $C^2(X)$ onto $C(X) \times I$.

PROOF OF THEOREM II. Let $\{v_i\}$ be the unit points in Euclidean space E^{m+1} ; that is, v_i has 1 for its ith-coordinate and 0 otherwise. Let σ denote the m-simplex $v_1v_2 \cdots v_{m+1}$. Since $\sigma \approx I^m$, it is clear we can replace I^m by σ in Theorem II. For each i let σ_i be the (m-1)-dimensional face $v_1 \cdots v_i \cdots v_{m+1}$. Now let X_0 be any space in Theorem II. For $i \ge 1$ let $X_i = \{x \in X_0 \mid x \cap \sigma_k \ne \emptyset \text{ for all } k \le i\}$. Clearly $C(X_{i+1}) \approx \{tv_{i+1} + (1-t)x: t \in I, x \in X_{i+1}\} = X_i$. Suppose $x(\ne v_{i+1}) \in X_i$. Let $t = \min \pi_{i+1}(x)$, where π_{i+1} is the usual projection map. It is routine to verify that $x' = x/(1-t) - tv_{i+1}/ \in X_{i+1}$ and thus $tv_{i+1} + (1-t)x' = x$. Inductively, we have $X_0 \approx C(X_1) \approx CC(X_2) \cdots \approx C^{m+1}(X_{m+1})$. The theorem now follows from the Cone Lemma.

PROOF OF THEOREM III. Let s denote the infinite product of reals and let $T = \{(x_1, x_2, \dots) \in I^{\infty} | 0 \le x_i \le 1 \text{ and } \sum_{i=1}^{\infty} x_i \le 1\}$. Evidently T is closed in I^{∞} and therefore compact. Thus T is a compact convex subset of the locally convex topological linear space s which admits a countable family of continuous linear forms that separate

points (namely, the family $\{\pi_i\}$ of projections) and thus by [2] T is homeomorphic to I^{∞} . Hence we may replace I^{∞} by T in Theorem III. Now let X_0 be any space in Theorem III and let k be any positive integer. For each $i \ge 1$, let $T_i = \{(x_1, x_2, \cdots) \in T | x_i = 0\}$ and $X_i = \{x \in X_0 | x \cap T_k \ne \emptyset \text{ for all } k \le i\}$. As in Theorem II, $C(X_{i+1}) \approx X_i$. Inductively, $X_0 \approx C(X_1) \cdots \approx C^{k+1}(X_{k+1})$. The theorem now follows from the Cone Lemma.

REFERENCES

- 1. K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875-882.
- 2. V. L. Klee, Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.
- 3. R. Schori, Hyperspaces and symmetric products of topological spaces, Fund. Math. 63 (1968), 77-88.

University of Washington