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1. The purpose of this paper is to answer a question of R. Schori

[3] and to provide simpler arguments for some generalizations of

Schori's results.

If X is a metric space, the hyperspace of X, denoted 2X, is the space

of all nonvoid closed subsets of X with the usual Hausdorff metric.

The n-fold (n'Sil) symmetric product (Borsuk-Ulam [l]) of X, de-

noted X(n), is the subspace of 2X consisting of all elements with g«

points. Let 7 denote the closed unit interval, 7" the w-cube and 7°°

the Hilbert cube. Let S(X) denote the subspace of 2X consisting of

all continua. In [3] R. Schori shows that for w^l and a= °°, 1, 2,

• • • , Ia(n) contains Ia as a factor; that is, I"(n) is homeomorphic

to Y XIa lor some space Y. Let 7°° denote another copy of the Hilbert

cube with J=[ — 1, l] and let R be the equivalence relation on

J°° defined by identifying each x = (xi, x2, • • • ) with —x
= (-*i, -Xi, ■ • ■).

Theorem I. J°°/R is not homeomorphic to J°°.

Thus we settle a question of R. Schori [3].

Proof. Let us suppose it were. Consider the natural quotient map

P: J^-^J^/R. Evidently the restriction of P: J" — O-^J^/R—P(0)

is a two-fold covering. Since the Hilbert cube is homogeneous, it

follows from the assumption that Jx/R — P(0) is simply connected

and therefore (well-known) does not admit a two-fold covering. This

is a contradiction.

Question. Is JK/R an Absolute Retract?

The question is interesting because Jx/R is clearly a retract of

J^/RXJ", which is homeomorphic to J°°(2) by [3]. A negative

answer would imply that JK(2) is not homeomorphic to J°°.

Theorem II. Let m, n be positive integers. If X = Im(n), 2(jra) or

S(Im), then X contains Im as a factor.

Remark. Schori's proof is restricted to symmetric products since

it makes strong use of the following well-known characterization of

Im(n). If w is a positive integer, then Im(n) is homeomorphic to Im/R

where R is the equivalent relation on 7m defined by (xi, • • • , x„)
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R(yx, ■ • ■ , yn) iff {xi, • • • , x„} = {yi, • • • , y„} (x¿ and y,- are points

in Im). However, as such he is able to include the case when m= a>

in his theorem. On the other hand, by working directly with the sub-

spaces of 2/m we are able to give a much simplified proof and although

we are not able to include m = «, we generalize in the direction of

more general subspaces of 2r" which, as the nature of the technique,

may include even more subclasses than those mentioned in Theorem

II. In the case when hí=« we are able to prove the following partial

generalization:

Theorem III. If X = Ix(n), S(I°°) or 21", then for any positive integer

k, X contains P as a factor.
BO

Question. If X = S(IX) or 21 , must X contain £° as a factor?

2. The Cone Lemma. The cone over a space X, denoted C(X), is

the quotient space of XXI obtained by identifying AX1 as a point

», where » is called the vertex of C(X). Inductively for n>l, define

Cn(X) = C(Cn~1(X)). Let "«" denote "homeomorphic to".

Lemma. (Schori). For »>1, Cn(X) ^C(X)Xln~1.

Outline of Proof. By induction it suffices to consider n = 2; that

is C2(X)~C(X)XI. For each xEX, C2(x) can be realized as a tri-

angle and thus we can deform C2(x) into C(x)XI. Ii we do this uni-

formly for each x (detail in [3]), we obtain a homeomorphism from

C2(X) onto C(X)XI.

Proof of Theorem II. Let {»,•} be the unit points in Euclidean

space Em+1; that is, »¿ has 1 for its ith-coordinate and 0 otherwise.

Let a denote the m-simplex »i»2 • • • vm+i. Since a « Im, it is clear we

can replace Im by a in Theorem II. For each i let er,- be the (m — 1)-

dimensional face »i • • • 0< • • • »m+i. Now let Xa he any space in

Theorem II. For ¿ = 1 let X{= {xEXo\xr\o-k^0 for all k^i}.

Clearly C(Xi+i) « {tvi+1 + (l-t)x: tEI, »G^i}iC^¡. We contend

that {tvi+i + (l—t)x:tEI, xEXi+1} =X,. Suppose x(?¿ví+i)EXí-

Let ¿ = min Trt+i(x), where tt.+i is the usual projection map. It is rou-

tine to verify that x' =x/(l —t) —tVi+x/EXi+i and thus tvi+i + (l —t)x'

= x. Inductively, we have X0« C(Xx) « CC(X2) ■ ■ ■ ~Cm+1(Xn+i).

The theorem now follows from the Cone Lemma.

Proof of Theorem III. Let s denote the infinite product of reals

and let £={(xi, x2, • • • )EI°°\ 0^xi = l and Z)f-i *.^1 }• Evi-
dently T is closed in I°° and therefore compact. Thus £ is a compact

convex subset of the locally convex topological linear space 5 which

admits a countable family of continuous linear forms that separate
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points (namely, the family {iri} of projections) and thus by [2] T is

homeomorphic to 700. Hence we may replace 7W by T in Theorem III.

Now let Xo he any space in Theorem III and let k he any positive

integer. For each »¡£1, let 7\ = {(xi, x2, • • • )GF|x< = 0} and Xi

= {xQXo\xr\Th9*-0 for all k^i}. As in Theorem II, C(Xi+1)«X<.
Inductively, Y0«C(Xi) • • • «C*+1(X*+i). The theorem now follows

from the Cone Lemma.
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