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The problem of determining the number \p(n) of elements of the

free distributive lattice on « generators was posed by Dedekind [l ]

in 1897. It was solved by that author for « = 4. R. Church [2] in 1940

and M. Ward [3] in 1946 obtained solutions for « = 5 and w = 6

respectively.

In 1954 E. N. Gilbert [4] showed that^(w) satisfied the inequalities

'fn.lnin   = ^,(w)   <;  wCn,[n/2]+2

(where Cn,[nß) is the binomial coefficient).

Korobkov [5] in several papers published in 1962-1965 was able

to improve the upper bound in \p(n) to

4.23C
2        ».[n/2]i

In 1966 G. Hansel [ó] reduced the upper bound still further to

3Cn.[n/2]_

In this paper we show that log2^(«) is asymptotic to Cn,inn\', m

fact we show that

2<l+a»)Cn, [n/2]   <;  ^,(M)   _   2 U+ßn)Cn, [n/2]

with an = ce~nli, /3„ = e'(Iog w)/«1'2.

The number \p(n) is equal to the number of ideals, or of antichains,

or of monotone increasing functions into 0 and 1 definable on the

lattice of subsets of an «-element set Sn. Here an ideal is a collection

I of subsets such that BEI, AEB implies ^4G£ an antichain is a

collection of subsets no two of which are ordered by inclusion. An

ideal can be uniquely corresponded to an antichain (its maximal

members) and to a monotone function (that which takes the value 0

inside it and 1 outside it).

Hansel proceeds by partitioning the subsets of 5„ into Cn,[n/2]

chains (totally ordered collections of subsets) in a certain manner.

He then defines all possible monotone functions on each chain in turn.
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Since there turn out to be at most three possible ways to define func-

tions in each chain, he obtains the result

4>(n) Ú 3C"'[n/21.

We also partition the subsets into chains and define monotone

functions on these in turn. We, however, only allow two possible

definitions on most (asymptotically all) of the chains. In order to

make up for the fact that such a procedure does not yield all possible

functions, we repeat it using w! different partitions into chains and a

number an of different orderings of the chains. We then prove that

every function is constructed at least once. Thus we obtain a limita-

tion on ^(w) that is of the form

4>(n) è «!an2C»'[»/2)'a+°a)).

Below a construction procedure for monotone (0, 1) functions on the

subsets of an «-element set is presented. That every function is con-

structed by it at least once is then proven.

For convenience we first construct monotone functions on subsets

having at least n/2—r and at most «/2+t elements in them. The

same construction can be applied for other ranges of subset size;

since every monotone function is monotone within each range, the

total number of such functions cannot exceed the product of the

number of such functions obtained for each range.

Consider some particular partition P of the subsets of size in the

range described above into C„,[n/2] chains. (We can insist that each

member of these chains except for the smallest cover another mem-

ber.) Such partitions exist according to Dilworth's and Sperner's

theorems and Hansel provides an example of one. Let ir be any per-

mutation of the « elements of Sn. ir induces a permutation among

subsets of Sn and hence among chains and among partitions into

chains. The construction procedure described below will be applied

to all «! partitions obtained by applying each permutation tt to the

given partition P.

The construction procedure to be described involves ordered parti-

tions into chains, that is to say partitions as in the last paragraph in

which the blocks or chains are arranged in a specific order. For each

partition ir(P) we will actually consider a number of different order-

ings of the chains. We first define a particular ordering as follows.

Each chain contains one [«/2] element set; we will define an ordering

for these and order the chains accordingly. We order the [ra/2] ele-

ment sets Ai, A2, • • • , ACn,[n/2] in such a manner that as far as pos-
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sible, the set Aj satisfies |yljP\.<4*| <«/2—t for all k in the range

/ — /=£</. Since there are at most

T

I 2~L  [C[n/2l,rC„_[n/2l,r]
r=0

subsets which A ¡ cannot be by this restriction it can always be ar-

ranged that Aj satisfies the given condition for

T

j Ú jo —  C„,[n/2] — I Zji C[n/2l,rC„_[„/2],r.

Let the integers j^jo be divided into blocks of size I; let the integers

between jo and Cn,[n/2] he considered individual blocks. We consider

as the ordering of chains in the ordered partitions into chains used

in the construction below, all

.1
+   1   +  I 2 C[„/2l,rCn_[n/2l,r j!

orderings of the blocks of chains associated with the blocks of A/s

just defined. For each « and t we choose I so as to minimize the fac-

torial just described; the minimum value of the factorial being de-

noted by a(n, t).

For each of the «!a(w, r) ordered partitions into chains apply the

following procedure. On each chain in order assign the values 0 or 1

to each subset in any manner consistent with the definition previously

chosen on earlier chains and with the monotone increasing property

of the functions to be constructed. However consider only those func-

tions for which l's are assigned to the second largest chain members

whose value is not predetermined by assignments on prior chains in

at most i chains. The number of functions constructed according to

this prescription cannot exceed

(I) C„,[n/2l,í(2r)'2C».[''/2l-í

since on all but the t chains in which this second largest unpredeter-

mined member can be assigned 1, only two possible functions can be

defined: the largest nonpredetermined set can be assigned 0 or 1.

The desired result (on the range n/2—r to ra/2+r) will be proven

if we show that for some choice of t such that

n\a(n, r)C„,U/2l,i(2r),2C".I»/2l-' = 2^t»'2) (1+°(1)>

all monotone functions will be constructed by the procedure de-

scribed above applied to each ordered partition described above.
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Consider a monotone function / on subsets of Sn which have be-

tween [n/2]—T and [n/2]+r elements. Divide the subsets x satisfy-

ing /(x) = 1 into two classes, with xQAk il of the subsets y covered

by x no more than k satisfy/(y) = 1, and xQBk otherwise. If xQAk,

then in at most a proportion k/\x\ of the partitions described above

will the subset y covered by x in the chain containing x satisfy/(y) = 1,

while in at least a proportion 1 — k\ x| of the partitions the member y

of x's chain covered by x will have/(y) = 0. The latter will take place

therefore for at least

»!(1 - k/\x\ )\Ak\

chains in unordered partitions. We can conclude that

(1 — k/\ x\ )\Ak\   Ú C„,tB/2]

and that xQAk, x covers y, f(y) = 1 will occur on the average over all

partitions in no more than

C„.[B/2]V|*| (1 -k/\x\)~1

chains.

There must therefore exist a partition into chains in which this

situation occurs in no more than

CnJ"/2l(l«72T^)(1"R2F^)

chains. Choose such a partition Pf. Let x below be a smallest member

of a chain in P¡ satisfying xQBk.f(x) will be predetermined if any of

the at least k chains containing subsets y covered by x satisfying

f(y) = 1 appear in the partition ordering before the chain containing

x. The construction of blocks above insures that no two sets covered

by x can lie in the same block of chains permuted in forming the

orderings of partitions considered above. Thus the set x will be in the

first of the k chains in the ordering containing such y for at most 1/k

of the orderings. Thus x will be predetermined for at least a propor-

tion (k — l)/k of the orderings of the partition Pf.

Since there are at most Cn,[B/2] members of Bk that are smallest

chain members with this property, the average over all orderings of

the number of chains containing an x on Bk such that/(x) was not

predetermined is at most (l/k)Cn,inm. There must therefore exist

some ordering 0¡ in which f(x) is predetermined in Bk in all but

(l/£)C„,[n/2] chains.

If in the construction of / on a given chain, the second largest
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unpredetermined member is assigned a value 1, the largest unpre-

determined member must either

(a) he in A k and cover a set satisfying/(y) = 1,

(b) be in Bk and be unpredetermined.

By the remarks above, if the ordering 0¡ of the partition Pf is

chosen, these alternatives can occur in at most

Cn-{nÁ^ + W2j^rV-]^r) )

chains. We conclude, that for

i = Cn,u/2] (— + --—-(l-r-—i-)    J
\*       [n/2] - t\        [n/2] - r)   )

the procedure described above must indeed produce every monotone

function on the given range. The optimal value for k here is roughly

[[w/2]— t]1/2 so that we may choose

t  =  Cn,[„/2]
([»/2] - r)

-(i+o(4)">
It is easy to compute that the factor n\ and a(n, t) are utterly negli-

gible compared to (I) for T~«fl(C,,[n/2i)> ß < 1 and that the number of

monotone functions in the range considered therefore cannot exceed

2   n,["/2]

the second term in the exponent arising from evaluation of (I) with

the value of t given above.

Similar arguments can be applied to compute the number of mono-

tone functions on other ranges of subset size. By suitable choice of

subset sizes, it can be shown that consideration of such subsets gives

rise to a contribution to the total number of monotone functions that

is very much smaller than is given by the second term above. We

conclude that

\p(n) ^ 2 n'ln/2i

We can easily produce 2cM'>/2] antichains by considering all collec-

tions of [«/2] element subsets of Sn. Most such antichains will con-

tain approximately half of all [n/2] element subsets, and will contain

subsets that are contained in all but approximately (C„,[„/2] + l)e_n/4

element sets. Any of the remaining ([w/2] + l) element sets can be

added to the antichain. We can easily see therefore that
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*(n)  ^  2 ».tn/21^      '.

This lower bound can be improved [7].

Bibliography

1. R. Dedekind, Ueber Zerlegungen von Zahlen durch ihre grössten gemeinsamen

Teiler, Festschrift Hoch. Braunschweig u. ges. Werke, II (1897), 103-148.

2. R. Church, Numerical analysis of certain free distributive structures, Duke Math.

J. 6 (1940), 732-734.
3. M. Ward, Note on the order of free distributive lattices, Abstract 135, Bull. Amer.

Math. See. 52 (1946), 423.
4. E. N. Gilbert, Lattice theoretic properties of frontal switching functions, J. Math.

Phys. 33 (1954), 57-67.
5. B. K. Korobkov, Problemy Kibernet 13 (1965), 5-28.
6. G. Hansel, Sur le nombre des fonctions booléennes monotones de n variables,

C. R. Acad. Sei. Paris 262 (1966), 1088-1090.
7. K. Yamamoto, Logarithmic order of free distributive lattices, J. Math. Soc. Japan

6 (1964), 343-353.

Massachusetts Institute of Technology


