AMPLE VECTOR BUNDLES ON ALGEBRAIC SURFACES

STEVEN L. KLEIMAN¹

The positivity of the Chern classes c_i of an ample vector bundle on an algebraic surface is studied. Notably the inequality $0 < c_2 < c_1^2$ is established. This inequality was conjectured by Hartshorne [5] and Griffiths [1] (for compact, complex manifolds).

Let X be a scheme of finite type over an algebraically closed field, E a vector bundle on X (i.e., a locally free sheaf of constant, finite rank), and $S^n(E)$ the nth symmetric power of E.

DEFINITION (HARTSHORNE [5]) 1. The bundle E is ample if for every coherent sheaf F on X, there is an integer N > 0, such that for every $n \ge N$, the sheaf $F \otimes S^n(E)$ is generated by its global sections.

PROPOSITION (HARTSHORNE [5]) 2. Consider the following conditions:

- (i) The bundle E is ample.
- (ii) Let P = P(E) be the associated projective bundle and $L = O_P(1)$ the tautological line bundle. Then L is ample on P.
- (iii) For every coherent sheaf F on X, there exists an integer N>0, such that for $n \ge N$ and $q \ge 1$

$$H^q(X, F \otimes S^n(E)) = 0.$$

Then (i) and (ii) are equivalent and they are implied by (iii). If further, X is complete, then (i), (ii) and (iii) are all equivalent.

THEOREM 3. Let X be an irreducible, nonsingular surface which is projective over an algebraically closed field, and let A(X) be the Chow R-algebra of cycles modulo numerical equivalence. Let E be a vector bundle of rank $r \ge 2$ on X, and let c_1 , $c_2 \in A(X)$ be the Chern classes of E. Assume E is ample. Then, $c_2 > 0$ and $c_1^2 - c_2 > 0$.

PROOF. Since E is ample on X, then $O_P(1)$ is ample on P = P(E). Hence, by [EGA II, 4.4.1, 4.4.2 and 4.4.10], there exist an integer $n \ge 2$ and a projective embedding, $j: P \to Y = P_k^N$ such that $O_P(n) = j^*O_Y(1)$. For this embedding, let S be the Chow variety parametrizing the 2-dimensional sections of P by linear spaces and T the subvariety of S corresponding to those sections which meet a given fiber of $P \to X$ in infinitely many points. As $n \ge 2$, the codimension of T in S is at least S.

Received by the editors November 20, 1967.

¹ This research was in part supported by the National Science Foundation under Grant NSF GP-5177.

Let H be a general 2-dimensional linear section of P. By the principal of counting constants, the map $H \rightarrow X$ has finite fibers; so, it is finite by [EGA III, 4.4.2]. Further, H is irreducible and nonsingular by Bertini's theorems [EGA V].

Let l be the class of $O_P(1)$ in the Chow algebra A(P). By [2] or [3.1], A(P) is generated over A(X) by l modulo the relation,

$$(3.1) l^r - c_1 l^{r-1} + c_2 l^{r-2} = 0.$$

Let $a \in A^1(X)$. Then, $(l-c_1) \cdot l^{r-1} \cdot a = -c_2 \cdot a \cdot l^{r-2} = 0$. Let $h \in A(P)$ be the class of H; then, $h = (nl)^{r-1}$. Therefore,

$$(3.2) (l-c_1) \cdot a \cdot h = 0.$$

Let $i: H \rightarrow P$ be the inclusion map and i_* , i^* the maps induced on the Chow algebras. Then, $i_*i^*b = b \cdot h$ for $b \in A(P)$. In view of (3.2), it follows that for any $a \in A^1(X)$,

$$i^*((l-c_1)\cdot a) = 0.$$

The Lefschetz hyperplane theorem [3.2, XIII, 4.6 (iii) \Leftrightarrow (vi)] implies that $i^*(l-c_1) \neq 0$ because $(l-c_1) \neq 0$. Let $a \in A^1(X)$ be the class of an ample line bundle. Since H is finite over X, then $a \cdot 1_H \in A^1(H)$ is the class of an ample line bundle by [EGA II, 5.1.12]. In view of (3.3), the Hodge index theorem [3.2, XIII, 7.1] asserts that $0 > i^*(l-c_1)^2$; thence, by (3.1) and (3.3) with $a = c_1$, it follows that $0 > -c_2 \cdot 1_H$.

Similarly, since i*l is the class of an ample line bundle on H, then $0 < i*l^2$; thence, by (3.1) and (3.2) with $a = c_1$, it follows that $0 < (c_1^2 - c_2) \cdot 1_H$.

REMARK 4. With the more general theory of Chern classes developed in [3.1], the same reasoning establishes that $c_2 > 0$ and $c_1^2 - c_2 > 0$ for an ample bundle E on an arbitrary surface X. Consequently, on a projective algebraic scheme Y of arbitrary dimension, an ample bundle E has classes c_2 and $c_1^2 - c_2$ which have positive intersection number with every surface X on Y.

EXAMPLE 5. Under the conditions of Theorem 3, the inequality $c_1^2-c_2>0$ is best possible in the following sense. There exists a sequence of ample, rank 2 bundles E_n on X, such that for all $\epsilon>0$, $(c_1^2-(1+\epsilon)c_2(E_n))$ equals $-\epsilon n^2d+\cdots$ with $d=\deg(X)$, so it tends to $-\infty$ as $n\to\infty$.

To construct E_n , fix a surjection $\alpha_n: O_X^{\oplus 3} \to O_X(n)$. Let F_n be the

² This line is due to Hartshorne who commented in private on the proof that $c_2 > 0$.

dual of the kernel of α_n and $E_n = F_n(1)$. Then E_n is a rank 2 bundle and there is an exact sequence

$$0 \to O_X(1-n) \to O_X(1) \oplus {}^3 \to E_n \to 0.$$

Hence, $c_1^2(E_n) = (n+2)^2 d$ and $c_2(E_n) = (n^2+n+1)d$. Finally, since E_n is a quotient of a direct sum of ample line bundles, E_n is ample [5, (2.2)].

In characteristic p>0, there are two new notions extending the notion of ampleness for line bundles: Let $f: X \rightarrow X$ be the Frobenius (pth-power) endomorphism and f_n the nth iterate of f.

DEFINITION (HARTSHORNE [5]) 6. (i) The bundle E is p-ample if for every coherent sheaf F, there is an integer N>0, such that for every $n \ge N$, the sheaf $F \otimes f_n^* E$ is generated by its global sections.

(ii) The bundle E is cohomologically p-ample if for every coherent sheaf F on X, there is an integer N > 0, such that for $n \ge N$ and $q \ge 1$, $H^q(X, F \otimes f_n^* E) = 0$.

REMARK 7. (i) Assume X is quasi-projective. Then any coherent sheaf F is a quotient of a sheaf of the form $O_X(-m)^{\oplus M}$ for $m, M\gg 0$. It follows that for the Definitions 6 (as well as for the analogous formulations of ampleness) it suffices to verify the condition on sheaves of the form $F = O_X(-m)$ for $m\gg 0$.

(ii) Hartshorne [5, (6.3)] proves that p-ample bundles are ample. He conjectures the converse, and proves it for line bundles and for curves [5, (7.3)].

EXAMPLE 8. A p-ample bundle on a complete scheme need not be cohomologically p-ample. In fact, the rank 2 bundles E_n constructed in (5) are p-ample being quotients of direct sums of p-ample bundles [5, (6.4)]; however, for $n \ge 2$, (although quotients of cohomologically p-ample bundles) they are not cohomologically p-ample because for $m \gg 0$, $H^1(X, f_m^*E_n)$ equals $H^2(X, O_X(-m(n-1)))$, which is >0 by [6, p. 944].

Proposition 9. Suppose X is quasi-projective and E is cohomologically p-ample. Then E is p-ample.

PROOF. In view of (7)(i), fix an integer m > 0 and let $G_n = (f_n^* E)(-m)$. Let $x \in X$ be a closed point. Then there is an N such that the stalk $(G_N)_x$ is generated by global sections. Indeed, it suffices to show that the map $H^0(X, G_N) \to H^0(X, G_N \otimes k(x))$ is surjective. However, by hypothesis, there is an N such that $H^1(X, I_x \otimes G_N) = 0$ where I_x is the ideal defining $\{x\}$. There is, therefore, a neighborhood U of x in which G_N is generated by global sections.

Let n = N + t, with $t \ge 0$. Then, $(f_n^* E)(-mp^t) = f_t^* G_N$ is generated in U by global sections. However, for any sheaf G and $r \ge 0$, G is a quotient of $G(-r)^{\bigoplus_s}$ for suitable s. Thus, G_n is generated in U by global sections. By quasi-compactness, it follows that E is p-ample.

LEMMA 10. Suppose X is integral, quasi-projective and of dimension r and E is p-ample. Then for some a > 0,

$$h^0(X, f_n^*E) \geq ap^{rn} + \cdots$$

PROOF. Take N such that $(f_N^*E)(-1)$ is generated by global sections. It follows that there is a map $\beta \colon O_X(1) \to f_N^*E$ which is a split-injection on an open set. Let n = N + t, with $t \ge 0$. Then, O_X being torsion free, $f_t^*\beta \colon O_X(p^t) \to f_n^*E$ is an injection. Thus, $h^0(X, f_n^*E) \ge h^0(X, O_X(p^t))$; whence the conclusion.

THEOREM (HIRONAKA³) 11. Let X be an integral (nonsingular) surface which is projective over an algebraically closed field of characteristic p>0, E a cohomologically p-ample bundle on X, and c_1 , c_2 the Chern classes of E modulo numerical equivalence. Then, $c_1^2-2c_2>0$.

PROOF. For any bundle E on X, the Riemann-Roch theorem implies that $\chi(f_n^*E) = ((c_1^2 - 2c_2)/2!)p^{2n} + \cdots$. Suppose E is cohomologically p-ample. Then, in view of (9) and (10), E is p-ample and $c_1^2 - 2c_2 > 0$.

References

- 1. P. Griffiths, Hermitian differential geometry and positive vector bundles, (to appear).
- 2. A. Grothendieck, Sur quelques propriétés fondamentales en théorie des intersections, Séminaire C. Chevalley, École Norm. Sup., Paris, 1958.
- 3. A. Grothendieck et al., Séminaire de géométrie algébrique, 1966-1967, North-Holland, Amsterdam, (to appear).
 - 3.1. Exposes of Berthelot.
 - **3.2.** Expose of Kleiman.
- 4 [EGA]. A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math., No. 4, (1960).
- 5. R. Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math., No. 29, (1966), 63-94.
- 6. S. Kleiman, On the vanishing of $H^n(X, F)$ for an n-dimensional variety, Proc. Amer. Math. Soc. 18 (1967), 940-944.

COLUMBIA UNIVERSITY

³ This result was in essence contained in a private communication from Hironaka.