
AMPLE VECTOR BUNDLES ON ALGEBRAIC SURFACES

STEVEN L. KLEIMAN1

The positivity of the Chern classes c, of an ample vector bundle

on an algebraic surface is studied. Notably the inequality 0<c2<c\

is established. This inequality was conjectured by Hartshorne [5]

and Griffiths [l] (for compact, complex manifolds).

Let X be a scheme of finite type over an algebraically closed field,

£ a vector bundle on X (i.e., a locally free sheaf of constant, finite

rank), and Sn(E) the «th symmetric power of £.

Definition (Hartshorne [5]) 1. The bundle £ is ample if for

every coherent sheaf F on X, there is an integer N>0, such that for

every n^N, the sheaf £<8>5n(£) is generated by its global sections.

Proposition (Hartshorne [5]) 2. Consider the following condi-

tions :

(i)  The bundle E is ample.

(ii) Let P = P{E) be the associated projective bundle and L = Op(l)

the tautological line bundle. Then L is ample on P.

(iii) For every coherent sheaf F on X, there exists an integer N>0,

such that for n = N and q^l

Hq(X, F ® £»(£)) = 0.

Then (i) and (ii) are equivalent and they are implied by (iii). If further,

X is complete, then (i), (ii) and (iii) are all equivalent.

Theorem 3. Let X be an irreducible, nonsingular surface which is

projective over an algebraically closed field, and let A (X) be the Chow

R-algebra of cycles modulo numerical equivalence. Let E be a vector

bundle of rank r^2 on X, and let c\, c2EA(X) be the Chern classes of

E. Assume E is ample. Then, c2>0 and c\ — c2>0.

Proof. Since £ is ample on X, then Op(l) is ample on £ = P(£).

Hence, by [EGA II, 4.4.1, 4.4.2 and 4.4.10], there exist an integer

«=■2 and a projective embedding, j:P—*Y=Pk such that Op(n)

=j*Oy(l). For this embedding, let 5 be the Chow variety parame-

trizing the 2-dimensional sections of P by linear spaces and £ the

subvariety of S corresponding to those sections which meet a given

fiber of P-^X in infinitely many points. As «^2, the codimension of

£ in 5 is at least 3.
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Let 77 be a general 2-dimensional linear section of P. By the prin-

cipal of counting constants, the map 77—>X has finite fibers; so, it is

finite by [EGA III, 4.4.2]. Further, 77 is irreducible and nonsingular

by Bertini's theorems [EGA V].

Let I be the class of 0P(l) in the Chow algebra A(P). By [2] or

[3.1], A(P) is generated over A(X) by / modulo the relation,

(3.1) I' - cil^1 + c2l*~2 = 0.

Let aQA\X). Then, (l-ci)-lr~1-a= -c2-a-lr~2 = 0. Let hQA(P)

be the class of 77; then, h= («/)r_1. Therefore,

(3.2) (I- ci)-a-h = 0.

Let i: 77—>P be the inclusion map and ¿*, ** the maps induced on

the Chow algebras. Then, i*i*b = b-h for bQA(P). In view of (3.2),

it follows that for any aQA1(X),

(3.3) i*((l~ ci)-a) = 0.

The Lefschetz hyperplane theorem [3.2, XIII, 4.6 (iii)<=>(vi)] im-

plies that i*(l — ci)^0 because (/ —cO^O. Let aQA1(X) be the class

of an ample line bundle. Since 77 is finite over X, then a- IhQA1^)

is the class of an ample line bundle by [EGA II, 5.1.12]. In view of

(3.3), the Hodge index theorem [3.2, XIII, 7.1] asserts that 0

>i*(l—Ci)2; thence, by (3.1) and (3.3) with a = ci, it follows that

0>-C2-lH.

Similarly,2 since i*l is the class of an ample line bundle on 77, then

0<z*/2; thence, by (3.1) and (3.2) with a = d, it follows that 0

<(c\ — C2)-1H.

Remark 4. With the more general theory of Chern classes devel-

oped in [3.1], the same reasoning establishes that c2>0 and c\ — c2>0

for an ample bundle E on an arbitrary surface X. Consequently, on

a projective algebraic scheme Y of arbitrary dimension, an ample

bundle E has classes c2 and c\ — c2 which have positive intersection

number with every surface X on Y.

Example 5. Under the conditions of Theorem 3, the inequality

c\ — c2>0 is best possible in the following sense. There exists a se-

quence of ample, rank 2 bundles En on X, such that for all e>0,

(cl—(l+t)c2(En)) equals —en2d+ • • • with d = deg(X), so it tends

to — 00 as n—* 00.

To construct E„, fix a surjection an: Ox®3—»Ox(«). Let Fn be the

This line is due to Hartshorne who commented in private on the proof that c2>0.
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dual of the kernel of an and £„ = £„(1). Then £„ is a rank 2 bundle

and there is an exact sequence

0->Ox(l - «)-+Ox(l)©3^£„->0.

Hence, c\(En) = (n + 2)2d and c2(E„) = (n2+n + l)d. Finally, since £„

is a quotient of a direct sum of ample line bundles, £„ is ample [5,

(2.2)].
In characteristic p>0, there are two new notions extending the

notion of ampleness for line bundles: Let /: X—*X be the Frobenius

(pth-power) endomorphism and/„ the «th iterate of/.

Definition (Hartshorne [5]) 6. (i) The bundle £ is p-ample if

for every coherent sheaf £, there is an integer iV>0, such that for

every » = iV, the sheaf F®fnE is generated by its global sections.

(ii) The bundle £ is cohomologically p-ample if for every coherent

sheaf £ on X, there is an integer N>0, such that for « = iV and q^ 1,

Hq(X, £&/*£) =0.
Remark 7. (i) Assume X is quasi-projective. Then any coherent

sheaf F is a quotient of a sheaf of the form Ox( — m)®M for m, AO>>0.

It follows that for the Definitions 6 (as well as for the analogous

formulations of ampleness) it suffices to verify the condition on

sheaves of the form F=Ox( — m) for w5î>0.

(ii) Hartshorne [5, (6.3)] proves that p-ample bundles are ample.

He conjectures the converse, and proves it for line bundles and for

curves [5, (7.3)].

Example 8. A p-ample bundle on a complete scheme need not be

cohomologically /»-ample. In fact, the rank 2 bundles £n constructed

in (5) are p-ample being quotients of direct sums of p-ample bundles

[5, (6.4)]; however, forrad 2, (although quotients of cohomologically

p-ample bundles) they are not cohomologically p-ample because for

w»0, Hl(X, /*£„) equals H2(X, Ox{-m(n-l))), which is >0 by

[6, p. 944].

Proposition 9. Suppose X is quasi-projective and E is cohomologi-

cally p-ample. Then E is p-ample.

Proof. In view of (7) (i), fix an integer wz>0 and let G„ = (/*£)(—m).

Let xEX be a closed point. Then there is an N such that the stalk

(Gn)x is generated by global sections. Indeed, it suffices to show that

the map H°(X, GN)-^H0(X, G^®k(x)) is surjective. However, by

hypothesis, there is an N such that H1(X, Ix®Gx) =0 where Ix is the

ideal defining {x}. There is, therefore, a neighborhood U of x in which

GN is generated by global sections.
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Let n = N+t, with iïïO. Then, (f*E)( — mp') =f*GN is generated in

U by global sections. However, for any sheaf G and r = 0, G is a quo-

tient of G( — r)®" for suitable 5. Thus, Gn is generated in U by global

sections. By quasi-compactness, it follows that E is p-ample.

Lemma 10. Suppose X is integral, quasi-projective and of dimension r

and E is p-ample. Then for some a > 0,

h°(X,f*E) ^ ap"> +

Proof. Take TV such that (fnE)( — l) is generated by global sec-

tions. It follows that there is a map ß: Ox(l)^>ftiE which is a split-

injection on an open set. Let n — N+t, with t^.0. Then, Ox being

torsion free, f*ß: Ox(pt)-^ftE is an injection. Thus, h°(X, f*E)

= Ä°(X, Ox(P1)); whence the conclusion.

Theorem (Hironaka3) 11. Let X be an integral (nonsingular) sur-

face which is projective over an algebraically closed field of characteristic

p>0, E a cohomologically p-ample bundle on X, and C\, c2 the Chern

classes of E modulo numerical equivalence. Then, c\ — 2c2 > 0.

Proof. For any bundle E on X, the Riemann-Roch theorem im-

plies that x(/*7i) = ((ci-2c2)/2!)^2"-l- • • • . Suppose E is cohomo-

logically p-ample. Then, in view of (9) and (10), E is p-ample and

c?-2c2>0.
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