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We consider here the two dimensional problem of scattering of a

wave by a finite set of smooth, finite, nonintersecting arcs. Let the

points in E2 he denoted by z = x+iy. Let £,-, i — l, • • • , n he arcs

given by

z = Xi(t) + iyi(t),       0 á i á 1,       i = 1, ».

We denote the point x¿(0)+íy,(0) by a¿ and the point Xi(l)+iy((l)

by bi. We assume that the functions x¿(í) and y((t) have Holder con-

tinuous second derivatives and that the arcs £,- do not intersect. We

denote the union of the £,'s by £ and the open set £2 —£ by G. We

seek a function u,(x, y) which satisfies the following conditions:

(a) u, is continuous in £2,

(b) in G, u, satisfies the reduced wave equation

d2ua       d2us
(1)     -H-h k2u3 = 0,       k^O,    Re k = 0,    Im /fe = 0,

dx2        dy2

(c) us satisfies the radiation condition

du¡
(2) lim   f

¿M z
¿¿«a ¿5 = 0,

(d) on £, w,+wo = 0

where w0 is a prescribed function (the incident wave) which satisfies

(1) in all of E2.

The purpose of this note is to prove the following

Theorem. There exists a (unique) function us satisfying conditions

(a)-(d) above.

Uniqueness follows from the work of Levine [2]. (Levine proves

his uniqueness theorem in the three dimensional case, however his

proof can easily be modified so as to apply here.) Here we will prove

existence. Our method is similar to that of Leis [l] who considered

the case of scattering by a piecewise smooth closed contour.
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Proof of the Existence Theorem. Let z0 = x0-H:yo and r

= \z—zo\. Define

(3) Q(z, so) = (i/A)H?\kr),

where Tí* denotes the zero order Hankel function of the first kind.

Then for fixed z0 and z^z0 Q satisfies (1) and (2). For small r we have

(4) (i/A)Ho\kr) = (l/2x) log(l/r) + h(r),

where h(r) and h'(r) are finite at r = 0 (i.e. Q(z, z0) is the fundamental

outgoing solution of the reduced wave equation).

We seek a solution to the problem of the form

(5) u,(z) =  I  <j>(z0)Q(z, z0)ds0.
J L

We assume that the unknown function <p defined on L is Holder

continuous in the neighborhood of every interior point of the arcs 7,<

and if d is one of the endpoints of 7,,- (ci = ai or &¿) we have

| <t>(zo) |   á K/1 z0 - Ci I»,    ZoQLf   0 ^ a < 1.

Functions satisfying the above conditions will be said to belong to

class h. (We are motivated to seek <p out of this class of functions by

examining the solution of the problem of diffraction by a half line.)

Then the function u, defined by (5) will satisfy conditions (a), (b),

and (c) of the problem. To satisfy the boundary condition (d) we

must have

(6) —Uo(z)=   I   (b(zo)Q(z, z0)ds0,        z Q L.
J L

By (4) Q(z, zo) has a logarithmic singularity at z=z0. However, by a

theorem in [3, p. 31] we may differentiate the right-hand side of (6)

by differentiating formally under the integral sign and interpreting

the result as a Cauchy Principal Value. Now

dQ Id log r dr
- =-h h'(r) — •
ds 2%     ds ds

r=(z—Zo)e~iv where v is the argument of the difference z—z0. Hence

d log r            1       dz        dv          1 dv
-=-i — =-eou) — i —

ds z — Zo  ds        ds      z — Zo ds

where 6(z) is the angle between the x axis and the tangent to L at z.
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Further ¿s0 = exp( — id(zo))dzo- Thus the result can be written in the

form

(7)

with

duo            C           K(z, z0)
f(z) = - —- (z) =   I   <b(z0)-dzo,

OS J j, Zn — Z

(1 i   dv dr "l
K(z, z„) = {— ei9<*> +-(z - zo) + h'(r) — (z„ - z)} «-«<*».

\2ir 2ir ds ds )

K(z, Zo) is Holder continuous with respect to both variables on each

of the closed arcs £¿ and £(zo, z0)tí0, ZoG£ It is required then to

find a solution d> in the class h of the singular integral equation (7). <p

is to be a solution in the sense that (7) holds for z on £ except perhaps

at end points.

Singular integral equations of the type (7) are treated in Chapter

14 of [3].2 If we write (7) as

(8) K<p = /,

we may state the results of [3] as applied to the present situation as

follows.

1. The necessary and sufficient conditions of solubility in class h

of the equation (8) are fLf(z)^j(z)dz = 0 where ^ (j=l, • • • , k') is

a complete system of linearly independent solutions in a certain class

h' of an adjoint equation K'ip = 0. (The definitions of K' and h! need

not concern us here.)

2. If k is the number of linearly independent solutions of the class

h of the homogeneous equation K<f> = 0 and k' is the number of linearly

independent solutions of the class h' of the adjoint equation K'\p = 0,

then k — k' = n.

In the present case we shall show that k = n. Hence k' = 0 and thus

(8) will have a solution for every (Holder continuous)/.

Let d>j he a solution of class h of Kd> = 0. Then we know that the

function

Vj(z) =  I  4>j(z0)Q(z, Zo)ds0

is constant on each £,- since its derivative with respect to s vanishes

on each £¿. Define Cy by Vj(z) —en, zELi.

2 In [3] the author considers a more general equation namely A(z)<j>(z) + (l/iri)

•fi {K(z, zo)0(0o)/(zo—z))dzn=f{z). The basic assumption under which this equation

is studied is that if B{z) =K(z, 2) then A2(z) — B2(z) t^O for z on L. In the present case

we have A (z) =0. The above condition then obtains since we have K{z, z) =0.
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Now let (pi, ■ ■ ■ , cpk he a complete set of linearly independent

solutions of K(p = 0. We have by statement 2 above k^n. We now

prove

Lemma 1. k — n (hence k' = 0). Furthermore the rank of the matrix

(dj) is n.

Suppose the lemma were false. Then we could find constants ay, j

= 1, • • • , k not all zero such that

Z Cijßj = 0,       i = 1, • • • , ».
•=i

Consider the functions <po= Z*=i afPi and Vo=$L<f>o(zo)Q(z, Zo)ds0.

On Li we have

k        /» k

»0(2) = 2 a,j I   <Pfa)Q(z, Zo)ds0 = £ ayC.y = 0.
3=1        «f L j'=l '

Hence v0 satisfies conditions (a), (b), (c) and vanishes on L. Thus by

uniqueness v0=0. But then <£(z0) = [dv/dn](z0) =0 where [dv0/dn](z0)

denotes the jump in the normal derivative of Vo across L at the point

Zo- Thus //Li aj(pj=0, contradicting the linear independence of the

<p/s. Hence we can solve (7) for any/. Let ?7o be a solution of (7) in the

class h. Then we have

u(z) =   I   r¡o(zo)Q(z, z0)ds0 = — u0(z) + Ci,        zQ Li,
J L

where C, are definite constants. But by Lemma 1 we can determine

constants ai, • • • , an so that

n

/ . Cijüj L-t, t —   1,  '   "  • , ».

y=i

Then if 17 =770+ £"-i a-di, ut(z) =fL-q(z0)Q(z, z0)ds0 satisfies (6) and

hence satisfies conditions (a)-(d) of the problem.
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