ON THE MULTIPLIERS OF Hp SPACES

P. L. DUREN¹

A complex sequence $\{\lambda_n\}$ is called a multiplier of H^p into H^q if $\sum \lambda_n a_n z^n$ is in H^q whenever $\sum a_n z^n$ is in H^p . In the context of fractional integration, Hardy and Littlewood [4, p. 415] showed that if $0 , <math>\alpha = 1/p - 1/q$, and

(1)
$$\lambda_n = \frac{n!}{\Gamma(n+1+\alpha)} = n^{-\alpha} + O(n^{-\alpha-1}),$$

then $\{\lambda_n\}$ multiplies H^p into H^q . The question arises whether the condition $\lambda_n = O(n^{-\alpha})$ alone implies $\{\lambda_n\}$ is such a multiplier. We show here that this is true if $0 , or if <math>0 and <math>q = \infty$, but false otherwise. The precise results are as follows.

THEOREM 1. If $0 , <math>\alpha = 1/p - 1/q$, and $\lambda_n = O(n^{-\alpha})$, then $\{\lambda_n\}$ is a multiplier of H^p into H^q . The same is true if $0 and <math>q = \infty$, but not if $1 . The number <math>\alpha$ is best possible: for each $a < \alpha$, there is a sequence $\{\lambda_n\}$ with $\lambda_n = O(n^{-\alpha})$ which is not a multiplier of H^p into H^q .

THEOREM 2. If $0 , the condition <math>\lambda_n = O(n^{-\alpha})$ does not imply that $\{\lambda_n\}$ is a multiplier of H^p into H^q . In fact, for each number $\beta < 1/p - 1/2$, there is a sequence $\{\lambda_n\}$ with $\lambda_n = O(n^{-\beta})$ which is not a multiplier of H^p into H^q for any q > 0.

THEOREM 3. If $2 , the condition <math>\lambda_n = O(n^{-\alpha})$ does not imply that $\{\lambda_n\}$ is a multiplier of H^p into H^q . In fact, for each number $\beta < 1/2 - 1/q$, there is a sequence $\{\lambda_n\}$ with $\lambda_n = O(n^{-\beta})$ which is not a multiplier of H^p into H^q for any $p < \infty$.

PROOF OF THEOREM 1. Suppose first that $0 and <math>2 \le q \le \infty$. If $\sum a_n z^n$ is in H^p , then $a_n = o(n^{1/p-1})$, by a theorem of Hardy and Littlewood [4]. This and the hypothesis on $\{\lambda_n\}$ give

$$|\lambda_n a_n|^{q'} \leq C n^{p-2} |a_n|^p,$$

where q'=q/(q-1) is the conjugate index. But by another theorem of Hardy and Littlewood [3], $\sum n^{p-2} |a_n|^p < \infty$ if $\sum a_n z^n$ is in H^p $(0 . Thus <math>\{\lambda_n a_n\} \in l^{q'}$, and it follows from the Hausdorff-Young theorem that $\sum \lambda_n a_n z^n$ is in H^q .

Received by the editors September 13, 1968.

¹ Supported in part by the National Science Foundation under Contract GP-7234.

Next suppose $1 and that <math>\lambda_n = O(n^{1/2 - 1/p})$. If $\sum a_n z^n$ is in H^p , then by Hölder's inequality, the Hardy-Littlewood theorem, and the Hausdorff-Young theorem,

$$\begin{split} \sum_{n=1}^{\infty} & |\lambda_n a_n|^2 \le C \sum_{n=1}^{\infty} n^{1-2/p} |a_n|^2 \\ \le & C \left\{ \sum_{n=1}^{\infty} n^{p-2} |a_n|^p \right\}^{1/p} \left\{ \sum_{n=1}^{\infty} |a_n|^{p'} \right\}^{1/p'} < \infty. \end{split}$$

Thus $\{\lambda_n\}$ multiplies H^p into H^2 .

Finally, suppose $1 . Given <math>\lambda_n = O(n^{-\alpha})$, let

$$\mu_n = n^{1/2-1/q} \lambda_n.$$

Then by what we have just shown, $\{\mu_n\}$ is a multiplier of H^p into H^2 . Thus to complete the proof it will suffice to show that $\{n^{1/q-1/2}\}$ multiplies H^2 into H^q . But by (1),

(2)
$$n^{1/q-1/2} = \frac{n!}{\Gamma(n+3/2-1/q)} + \nu_n,$$

where $\nu_n = O(n^{1/q-3/2})$. If $\sum a_n z^n$ is in H^2 , then trivially $\{\nu_n a_n\} \in l^{q'}$, since $\{a_n\}$ is bounded. Hence $\{\nu_n\}$ is a multiplier of H^2 into H^q ; and in view of (2) and the Hardy-Littlewood result mentioned in the opening paragraph, $\{n^{1/q-1/2}\}$ is also such a multiplier. This proves that $\{\lambda_n\}$ is a multiplier if $\lambda_n = O(n^{-\alpha})$.

That the corresponding statement is false if 1 can be seen by considering the function

$$f(z) = (1 - z)^{-1/p'} = \sum_{n=0}^{\infty} \lambda_n z^n.$$

Here $\lambda_n = O(n^{-1/p})$, but if $\{\lambda_n\}$ were a multiplier of H^p into H^{∞} , it would follow from a result of Caveny [1] that $f \in H^{p'}$, which is not the case.

Finally, suppose $0 < a < b < \alpha$. Then $(1-z)^{-1/q-b} \subset H^p$, but multiplication by a suitable sequence $\{\lambda_n\}$ with $\lambda_n = O(n^{-a})$ produces $(1-z)^{-1/q-b+a} \subset H^q$, $q \le \infty$. Hence α is best possible.

COROLLARY. If $0 , then <math>\{n^{-\alpha}\}$ is a multiplier of H^p into H^q .

PROOF. Hardy and Littlewood showed that the sequence $\{\lambda_n\}$ given by (1) is a multiplier of H^p into H^q . But if $\mu_n = O(n^{-\alpha-1})$, Theorem 1 shows that $\{\mu_n\}$ multiplies H^p into H^q , provided $q \ge 2/3$. In-

deed, the condition guarantees that $\{\mu_n\}$ multiplies H^2 into H^q if $2 \le p < q$; while if $0 and <math>q \ge 2/3$, $\{\mu_n\}$ will multiply H^p into H^2 . A similar discussion shows that $\{n^{-\alpha-k}\}$ multiplies H^p into H^q if $q \ge 2/(2k+3)$, $k=1, 2, \cdots$. Now, using the more precise formula

$$\lambda_n = n^{-\alpha} + Cn^{-\alpha-1} + O(n^{-\alpha-2}),$$

one finds that $q \ge 2/5$ is sufficient for $\{n^{-\alpha}\}$ to multiply H^p into H^q . But the same device shows that $\{n^{-\alpha-1}\}$ is such a multiplier if $q \ge 2/7$; hence so is $\{n^{-\alpha}\}$. Continuing this process, one proves the corollary for arbitrary q > 0.

The following result will be of use in proving the next two theorems. For a proof, see Zygmund [5, Vol. I, p. 214].

LEMMA 1. If $\{a_n\}$ is a complex sequence such that $\sum |a_n|^2 = \infty$, then for some choice of signs $\epsilon_n = \pm 1$, the function $\sum_{n=0}^{\infty} \epsilon_n a_n z^n$ has a radial limit almost nowhere.

PROOF OF THEOREM 2. It was shown in [2] that if $\{\lambda_n\}$ is a multiplier of H^p $(0 into <math>H^2$, then

(3)
$$\sum_{n=1}^{N} n^{2/p} |\lambda_n|^2 = O(N^2).$$

(This condition is also sufficient if $0 .) Given <math>\beta < 1/p - 1/2$, let $\lambda_n = \epsilon_n n^{-\beta}$, where the signs $\epsilon_n = \pm 1$ are as yet undetermined. Since the condition (3) is violated, $\{\lambda_n\}$ is not a multiplier of H^p into H^2 . In other words, there exists a function $\sum a_n z^n$ in H^p such that $\sum |n^{-\beta} a_n|^2 = \infty$. Therefore, for a suitable choice of signs ϵ_n , the function $\sum \lambda_n a_n z^n$ has a radial limit almost nowhere, by Lemma 1. In particular, this function does not belong to H^q for any q > 0.

The following lemma will be needed in the proof of Theorem 3.

LEMMA 2. If $1 < q < \infty$ and $1/q < \gamma < 1$, then $\{n^{-\gamma}\}$ is a multiplier of H^q into H^{∞} .

Proof. Let $\delta = 1 - \gamma$. Then $\delta < 1/q'$, so

$$g(z) = (1 - z)^{-\delta} = \sum_{n=0}^{\infty} b_n z^n$$

belongs to $H^{q'}$. Thus $\{b_n\}$ is a multiplier of H^q into H^{∞} (see Caveny [1]). But

$$\Gamma(\delta)b_n = \Gamma(n+\delta)/n! = n^{-\gamma} + \nu_n$$

where $\nu_n = O(n^{-\gamma-1})$. Since $\{\nu_n\} \in l^1$, it is clearly a multiplier of H^q into H^{∞} . Hence so is $\{n^{-\gamma}\}$.

PROOF OF THEOREM 3. We may assume $q < \infty$, since the case $q = \infty$ is covered by Theorem 1. Given $\beta < 1/2 - 1/q$, suppose that for every choice of signs $\epsilon_n = \pm 1$, $\{\epsilon_n n^{-\beta}\}$ is a multiplier of H^p into H^q . Let $\gamma = 1/2 - \beta$. By Lemma 2, $\{n^{-\gamma}\}$ multiplies H^q into H^∞ , so $\{\epsilon_n n^{-\beta - \gamma}\} = \{\epsilon_n n^{-1/2}\}$ multiplies H^p into H^∞ . Thus by the theorem of Caveny [1],

$$\sum_{n=1}^{\infty} \epsilon_n n^{-1/2} z^n \in H^{p'}$$

for every sign sequence $\{\epsilon_n\}$. But since $\{n^{-1/2}\} \oplus l^2$, this contradicts Lemma 1. This proves the existence of a sign sequence $\{\epsilon_n\}$ such that $\{\epsilon_n n^{-\beta}\}$ is not a multiplier of H^p into H^q .

REFERENCES

- 1. J. Caveny, Bounded Hadamard products of H^p functions, Duke Math. J. 33 (1966), 389-394.
- 2. P. L. Duren and A. L. Shields, Coefficient multipliers of H^p and B^p spaces, (to appear).
- 3. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1926), 159-209.
 - 4. ——, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439.
- 5. A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, New York, 1959.

University of Michigan and Institute for Advanced Study