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A complex sequence {X„} is called a multiplier of 77p into 77? if

23X„a„zn is in Hq whenever ^anzn is in 77". In the context of frac-

tional integration, Hardy and Littlewood [4, p. 415] showed that if

0<p <q< », a = \/p — i/q, and

«!
(1) Xn = = »- + 0(n-°-i),

T(n + 1 + a)

then {Xn} multiplies 77p into Hq. The question arises whether the

condition X„ = 0(«_a) alone implies {X„} is such a multiplier. We

show here that this is true if 0<p^2^q<<x>, or if 0<p^l and

ff= », but false otherwise. The precise results are as follows.

Theorem 1. If 0<p^2^q<°o, a = i/p-l/q, and Xn = 0(«-a),

then {X„} is a multiplier of Hp into H". The same is true ifO<p^l and

q = », but not if i<p<q= ». The number a is best possible: for each

a <a, there is a sequence {X„} with X„ = 0(n~") which is not a multiplier

of 77" into H".

Theorem 2. If 0<p<q<2, the condition \n = 0(n~a) does not imply

that {X„} is a multiplier of Hp into Hq. In fact, for each number ß

<l/p — l/2, there is a sequence {X„} with \n = 0(n~ß) which is not a

multiplier of H" into Hq for any q>0.

Theorem 3. If 2<£<<?;£», the condition X„ = 0(»_a) doe5 not

imply that {Xn} is a multiplier of Hv into Hq. In fact, for each number

ß<l/2 — l/q, there is a sequence {Xn} with \n = 0(n~ß) which is not a

multiplier of Hp into Hq for any p < ».

Proof of Theorem 1. Suppose first that 0<p^l and 2gçg ».

If Ean2" is in 77p, then a„ = o(ra1/p-1)> by a theorem of Hardy and

Littlewood [4]. This and the hypothesis on {X„} give

|X„a„|*' = C«P-2|a„|p,

where q' = q/(q — 1) is the conjugate index. But by another theorem

of Hardy and Littlewood [3], EwP_2!a'>|p< °° ^ Ea»zn is in

77p (0<p^2). Thus {Kan} El"', and it follows from the Hausdorff-

Young theorem that ^fk„anzn is in 77«.
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Next suppose l<p=2=a and thatXn = 0(«1/2-1/p). If J2a*zn is in

Hp, then by Holder's inequality, the Hardy-Littlewood theorem, and

the Hausdorff-Young theorem,

00 00

£ |XBa„|2 = C£«1-2/"|att|2

n-l n-1

/co \   1/p    /    co \   1/p'

= C^£«^2|an|4      <£|a„|pj       < ».

Thus {X„} multiplies PP into H2.

Finally, suppose Kp^2<q< <x>. Given X„ = 0(»-c"), let

Mn =  «1/2-1/5Xn.

Then by what we have just shown, {pn} is a multiplier of Hp into H2.

Thus to complete the proof it will suffice to show that {«1/5_1/2|

multiplies PP into PP. But by (1),

«!
(2) „i/s-i/2 =-+ „

T(n + 3/2 - I/o)

where vn = 0(nllq-3'2). If £a„zn is in H2, then trivially {vnan}Ql*',

since {a„} is bounded. Hence {vn} is a multiplier of H2 into PP; and

in view of (2) and the Hardy-Littlewood result mentioned in the

opening paragraph, j«1'8-1'2} is also such a multiplier. This proves

that {X„} is a multiplier if \n = 0(n~").

That the corresponding statement is false if Kp<q= oo can be

seen by considering the function

}(z) = (1 - z)-1"' = £ X„z».
n-0

Here X„ = 0(«_1/p), but if {X„} were a multiplier of Hv into PM, it

would follow from a result of Caveny [l] that/Gifp', which is not

the case.

Finally, suppose 0<a<è<«. Then (1— z)~llq~bQHp, but multi-

plication by a suitable sequence {X„} with X„ = 0(ra-a) produces

(1 — z)~Uq~b+aQHq, q = ». Hence a is best possible.

Corollary. If 0<p<q<«>, then {n~a} is a multiplier of Hp into

Hq.

Proof. Hardy and Littlewood showed that the sequence {X„}

given by (1) is a multiplier of Hp into PP. But if ju„ = 0(«_a_1), Theo-

rem 1 shows that {/*„} multiplies Hp into Hq, provided aj§2/3. In-
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deed, the condition guarantees that {ßn} multiplies 772 into 77a if

2^p<q; while if 0<p<q<2 and q^2/3, {ßn} will multiply 77* into

772. A similar discussion shows that j«"-"-*} multiplies 77p into 77« if

q^2/(2k + 3), k — l, 2, • • • . Now, using the more precise formula

A* = n~" + Cn'"-1 + 0(n-a~2),

one finds that g 2:2/5 is sufficient for {«_a| to multiply 77* into 77«.

But the same device shows that {»~a_1j is such a multiplier if

q ïï2/7; hence so is |«~a}. Continuing this process, one proves the

corollary for arbitrary q>0.

The following result will be of use in proving the next two theo-

rems. For a proof, see Zygmund [5, Vol. I, p. 214].

Lemma 1. If {an} is a complex sequence such that 231 a«l2= °° > then

for some choice of signs e„ = ±1, the function En-o enanzn has a radial

limit almost nowhere.

Proof of Theorem 2. It was shown in [2] that if {X„} is a multi-

plier of 77p (0<p< ») into 772, then

N

(3) 23«2/!,Un|2 = 0(A2).
n=l

(This condition is also sufficient if 0<£=T.) Given ß< l/p — 1/2, let

Xn = En«~", where the signs e» = ± 1 are as yet undetermined. Since the

condition (3) is violated, {Xn} is not a multiplier of 77" into 772. In

other words, there exists a function E0*2" m H" such that 231 n~ßan\2

= » . Therefore, for a suitable choice of signs en, the function EXnan3"

has a radial limit almost nowhere, by Lemma 1. In particular, this

function does not belong to 775 for any q>0.

The following lemma will be needed in the proof of Theorem 3.

Lemma 2. If 1 <q< » and l/q<y<l, then {n~y} is a multiplier of

77» into 77".

Proof. Let 5 = 1 —y. Then 5 < l/q', so

00

g(z) = (1 - z)-s = 23 bnz»
n-0

belongs to 77s'. Thus {bn} is a multiplier of 77« into Hx (see Caveny

[l]). But

T(S)bn = T(n + h)/n\ = n~» + vn,
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where Pn = 0(n~'r~1). Since {»»„jG^i it is clearly a multiplier of Hq

into H°°. Hence so is {«~7}.

Proof of Theorem 3. We may assume q < co, since the case q = »

is covered by Theorem 1. Given ß<.l/2 — l/q, suppose that for every

choice of signs e„= ±1, {e„«-ß} is a multiplier of Hp into Hq. Let

7 = 1/2— ß. By Lemma 2, f»-'1'} multiplies Hq into PM, so {e„«_fl—'}

= {e««-1'2} multiplies Hp into Hm. Thus by the theorem of Caveny

[1],
CO

£ e„«-1'2z" G Pp'
n-l

for every sign sequence {«„}. But since {«~1/2} Ql2, this contradicts

Lemma 1. This proves the existence of a sign sequence {e„} such that

{enn~ß} is not a multiplier of Hp into Hq.
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