ON THE MULTIPLIERS OF Hr SPACES
P. L. DUREN!

A complex sequence {)\n} is called a multiplier of H? into H? if
Z)\,,a,.z” is in H? whenever Za,.z" is in H?. In the context of frac-
tional integration, Hardy and Littlewood [4, p. 415] showed that if
0<p<g<w,a=1/p—1/q, and

n!
T T(n+1+a)

then {\,} multiplies H? into He The question arises whether the
condition \,=0(n"%) alone implies {)\n} is such a multiplier. We
show here that this is true if 0<p=<2=¢< =, or if 0<p=1 and
g= =, but false otherwise. The precise results are as follows.

THEOREM 1. If 0<p=2=5q¢<», a=1/p—1/q, and N\,=0(n"°),
then {)\,.} is a multiplier of H? into He. The same is true if 0<p =1 and
g= o, but not if 1<p<q= 0. The number a is best possible: for each
a<a, there is a sequence {)\,.} with X\, = 0(n=2) which is not a multiplier
of H? into He.

THEOREM 2. If 0<p <q<2, the condition N, = O(n~*) does not imply
that {\.} is a multiplier of H? into He. In fact, for each number
<1/p—1/2, there is a sequence {\,} with \,=0(n=*) which is not a
multiplier of H? into H? for any ¢> 0.

(1) An =n"* + O(n-a—l);

THEOREM 3. If 2<p<q= =, the condition N\,=O0(n"*) does not
imply that {)\,,} is @ multiplier of H? into H4. In fact, for each number
B<1/2—1/q, there is a sequence {)\,.} with N, =0(n*F) which is not a
multiplier of H? into H? for any p< «.

Proor oF THEOREM 1. Suppose first that 0<p =1 and 2=¢= ».

If > a.z" is in H?, then a,=o(n'?"1), by a theorem of Hardy and
Littlewood [4]. This and the hypothesis on {\.} give

| At |7 £ Cn72| aa?,

where ¢’ =¢/(g—1) is the conjugate index. But by another theorem
of Hardy and Littlewood [3], X n*?|a,|?< o if D a2 is in
Hr (0<p=2). Thus {\.a.} €I, and it follows from the Hausdorff-
Young theorem that D _\,a.2" is in He.
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Next suppose 1 <p<2=g and that \,=0(n!2-V?), If Y a,s" is in
Hr, then by Hélder's inequality, the Hardy-Littlewood theorem, and
the Hausdorff-Young theorem,

* ©
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n=1 n=1

o 1/p fd 1/p’
éC{Zn”"zlanP’} {Zlanl"'} < o,
n=1 n=1
Thus {)\,.} multiplies H? into H2.
Finally, suppose 1 <p<2<g< . Given A,=0(n"?), let

tn = nl/21a)

Then by what we have just shown, { un} is a multiplier of H? into H2.
Thus to complete the proof it will suffice to show that {ml/e-12}
multiplies H? into H? But by (1),

n!
Tt 32—1/p "

where v, =0(nle=%2), If 3 a,z" is in H?, then trivially {r.a.} €I,
since {a,} is bounded. Hence {».} is a multiplier of H? into H¢; and
in view of (2) and the Hardy-Littlewood result mentioned in the
opening paragraph, {n!e1/ 2} is also such a multiplier. This proves
that {\.} is a multiplier if A, =O0(n—%).

That the corresponding statement is false if 1<p<g= = can be
seen by considering the function

(2) nllT—llz =

fG@) = (1 =z~ = 3 Agm
n=0

Here N\, =0(n~Y?), but if {\,} were a multiplier of H» into H®, it
would follow from a result of Caveny [1] that f&€ H?", which is not
the case. '

Finally, suppose 0<a<b<a. Then (1—z)~Yedc H?, but multi-
plication by a suitable sequence {)\,.} with N,=0(n"*) produces
(1—3)~Vebte He g =< o, Hence a is best possible.

COROLLARY. If 0<p<g< =, then {n““} is a multiplier of HP into
He,

Proor. Hardy and Littlewood showed that the sequence {)\,,}
given by (1) is a multiplier of H? into H? But if u,=0(n—2"1), Theo-
rem 1 shows that {u,.} multiplies H? into H?, provided ¢=2/3. In-
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deed, the condition guarantees that {u,} multiplies H? into He if
2=2p<q;whileif 0<p<g<2and ¢=2/3, {u,.} will multiply H? into
H?. A similar discussion shows that {#—*—*} multiplies H? into H¢ if
¢22/(2k+3), k=1, 2, - - - . Now, using the more precise formula

Aw = w7+ Cn—t + O(n™72),

one finds that ¢=2/5 is sufficient for {#==} to multiply H? into He.
But the same device shows that {#=2-1} is such a multiplier if
g=2/17; hence so is {n‘“}. Continuing this process, one proves the
corollary for arbitrary ¢>0.

The following result will be of use in proving the next two theo-
rems. For a proof, see Zygmund [5, Vol. I, p. 214].

LemMA 1. If {a,,} 1s a complex sequence such that Z[ a,.l 2= oo, then
for some choice of signs e,= + 1, the function Y ., €,an2™ has a radial
limit almost nowhere.

PrOOF OF THEOREM 2. It was shown in [2] that if {\,} is a multi-
plier of H? (0<p< =) into H?, then

(©) ; n2lr| 2\, |2 = O(V?).

(This condition is also sufficient if 0<p=1.) Given <1/p—1/2, let
A=¢€,n~F, where the signs e, = +1 are as yet undetermined. Since the
condition (3) is violated, {\.} is not a multiplier of H” into H2. In
other words, there exists a function Y a,z"in H? such that )| nfa,|?
= . Therefore, for a suitable choice of signs €,, the function E)\,.anz"
has a radial limit almost nowhere, by Lemma 1. In particular, this
function does not belong to H? for any ¢>0.
The following lemma will be needed in the proof of Theorem 3.

LEMMA 2. If 1<g< » and 1/g<y <1, then {n=7} is a multiplier of
H into H*.

Proor. Let 6=1—+. Then éd<1/¢’, so
g®) = (1 —2)? = Z bz
n=0

belongs to H?. Thus {bn} is a multiplier of H? into H*® (see Caveny
[1]). But

T, =T+ 8)/nl = n7 + v,
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where v, =0(n—7"1). Since {vn} €11, it is clearly a multiplier of H¢
into H*. Hence so is {n~7}.

ProoF orF THEOREM 3. We may assume ¢< «, since the case g= «
is covered by Theorem 1. Given $<1/2—1/g, suppose that for every
choice of signs e,= +1, {e,n#} is a multiplier of H? into He. Let
¥=1/2—8. By Lemma 2, {n“‘/} multiplies H? into H®, so {e”n—”‘“f}
[= ]{e,.n"/’} multiplies H? into H*. Thus by the theorem of Caveny

1],

0
> eanl2gn & HY

n=1

for every sign sequence {e,}. But since {#~1/2} €12, this contradicts
Lemma 1. This proves the existence of a sign sequence {e,.} such that
{esn—?} is not a multiplier of H? into He.
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