
MULTIPLIERS OF LP AND HANKEL MATRICES

JAMES H. HEDLUND1

1. Introduction. A function/(z) analytic in the unit disc belongs

to the class H1 if

lim- f *\f(re")\de
r->l ¿IT J o

< co.

A sequence X= {X(»)J of complex numbers is said to be a multiplier

of Hl into the sequence space ll if X/= {X(w)/(«)} G^1 for every f(z)

= T"!" f(n)znQH1. The space of all such multipliers is denoted

(H\ P).
The only important known result about (PP, ll) is the inequality of

Hardy [S, p. 236]: {l/(« + l)} Q(H\ I1). Other similar multiplier

spaces have been completely characterized: an elementary sufficient

condition for (if1, I2), proved by Hardy and Littlewood [4], is also

necessary, and the spaces (PP, lq) for 2 =g= °° can be described simi-

larly. Also (Hp, I1) has been determined recently for 0<p<l by

Duren and Shields [3], while (H2, ll) is trivial. (PP, I1) is a more inter-

esting space, due to its equivalent formulations; perhaps in conse-

quence it seems more difficult to determine. In this paper we give an

alternate description of (if1, I1) in terms of Hankel matrices and use

this matrix description to derive some necessary and some sufficient

conditions.

2. Observations and equivalences. Observe initially that {X(w)}

G(P', I1) if and only if {|X(«)| }Q(H1, I1); thus we may assume

throughout thatX(w) =0. It follows from the Closed Graph Theorem

that a multiplier is a bounded operator. Write ||X|| for its norm.

Let P\ denote the Hankel matrix (T\)a=\(i+j) viewed as an

operator on the Hubert space I2.

Theorem 1. XG (H1,11) if o,nd only if Px is a bounded operator on I2.

ixc={c(n)}Ql2

f i = ||c||2. A calcu-

c\.

Proof. Write (c, d) for the inner product in I2.

withc(w)=0. Then/(z) = (£0" c(n)zn)2QHl and

lation shows that (T^c, c) = ||X/||1g||X|| ||/||i = ||X|| 2 Hence

||Zx|| = sup{(rxc, c): \\c\\i = 1, c(n) |0}| ||x||
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Conversely, fix/ETP and write/ = gÄ with II/H^M^HäH». If c(n)
= ||(«)|   and ¿(n) = |A(n)|, then \\\f\\i^(Txc, d)£\\T$ \\f\\i. Thus

IN =INI-
If X(«) = l/(« + l), then T\ is the Hubert matrix. Thus the Hardy

inequality is equivalent to the boundedness of the Hubert matrix.

Another interesting reformulation was proved by Nehari [7]: 7\ is

a bounded operator on I2 if and only if there is a function <pELx with

$(n) =X(w) for all «2:0. (Here X(w) need not be nonnegative.)

3. Necessary conditions. Some of the following results are best

stated in the language of mixed norm spaces. For l^r, 5<», let

Lr'' be the space of sequences with finite norm

/   »     / \»/r\l/»

INIr,-(Z( 23 I xool')  )

where I(m) = (2m_1, 2m], If either index is infinite replace the corre-

sponding sum by a supremum. For details see [l] and [ó].

Theorem 2. If\E(H\ I1) then X satisfies (N): E^oiES/M*))*
= 0(k).

Proof. Set yk — eo+ ■ • • +ek where {e¡}o is the standard basis of

/2. Then ||y4|2 = fe + l so that
«o     /  j+k \ 2

l|z\y*||» =23   EM*")) -0(a).

Corollary. If\E(N) then\El*andXEL1-".

We conjecture that (N) is sufficient as well as necessary. Examples

may be found of sequences XE¿2<^L1,0° which fail to satisfy (N) ; thus

the conditions of the corollary are not sufficient.

4. Sufficient conditions.

Theorem 3. L^E^J1).

Proof. Fix /EH1. Let n(m) be the index in I(m) where |/(«)| is

maximal. Then E= {n(m)} is a Paley set so that [8] its characteristic

function XeE(H1, I2). Thus

||a/||i= £x(n)|/(n)|   Ú E I/(»(*)) I EM») SSlMUNk*
n=-0 m=l I (m)

It is interesting to compare the necessary conditions and sufficient

conditions obtained so far: L1'" is necessary and L1'2 sufficient; also

I2 is necessary and I1 sufficient. All of the indexes are best possible,
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so any condition both necessary and sufficient must lie in between.

Two special cases provide evidence supporting the conjecture that

(N) is sufficient. If X is a lacunary sequence (say X(w)=0 for all

n9*2m) then XGP1'2 if and only if \Ql2; thus (N) is sufficient if the

nonzero terms of X are very sparse. The opposite extreme is when

they are dense, in some sense. One possible interpretation is mono-

tonicity.

Theorem 4. i/X(«) j 0 then\Q(Hl, I1) if and only if\(n) =0(1/«).

Thus (N) is necessary and sufficient.

Proof. Necessity is immediate, and sufficiency follows from the

Hardy inequality.

This latter case admits a generalization for which (N) is again

sufficient. It is generally correct that if one introduces blocks of zeros

between the terms of a multiplier in a sufficiently regular manner the

resulting sequence remains a multiplier. For example, for r = 1 define

Xr(«r) — 1/n, Xr(m) =0 for m9*nr. The Hubert matrix corresponds to

r = l. The Xr for r = l are again multipliers, although any sequence p

with p(nr) = (l/n)a for a<l is not. Such examples lead to considera-

tion of sequences which are regular in the following sense: X(«)=0

throughout (2m_1, 2m] except for <p(m) terms all of size^\}/(m), equally

spaced in the interval. (The equal spacing requirement may be re-

laxed enough that the sequences Xr are included under Theorem 5.)

Theorem 5. If \Q(N) and if there is a constant c<l with \J/(m)

= 0(cm) then\Q(H\P).

Proof. Since ~KQ(N)QL1-°° we may suppose that (p(m)\J/(m)^l.

We may further assume that c>l/2. Define p(n) = cm in I(m). We

shall show that £/l0 P(j)^(j+n) — 0(p(n)) ; it follows from the Schur

Lemma [2] that T\ is bounded.

Suppose first that « = 2k. Then

co k

£ P(j)Hj + 2") = £ CV(k + 1) max{ 1, 2"'-1-*<K¿ + 1)}
j=0 m=0

CO

+ £ cm[i(m) max{l, (2""-1 - 2k)21-md>(m)}

m-k+l

+ i(m + 1) max{l, 2k+1-m<j>(m 4-1)}]

k k co co

= c*-1 £ cm + 2-*-1 £ cm2m +2   £ cm +   £ c"

wi==0 m=0 m==A+l m—k+1

= 0(ck).
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The general case follows from this by noting that the corresponding

nonzero terms of X are multiplied by smaller values of p(n).
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