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1. Introduction. The permanent of an «-square matrix A = (a^)

is defined by

n

veriA) =£  II «¿"(¿j.
cesn  i=i

If A is a (0, 1) matrix, i.e. a matrix all of whose entries are either 0 or

1, we can interpret A as the incidence matrix of a configuration of n

subsets of a set consisting of n elements. In this interpretation per(^4)

is the number of systems of distinct representatives of the configura-

tion. Bounds for this number are therefore of considerable combina-

torial interest.

If A = (ay) is an «-square (0, 1) matrix, then clearly

(1) 0 á per(A) Í f[ U,
<=i

where r,= 2*-i a«v» î = L • ■ • » n- Several upper bounds, significantly

improving the upper bound in (1), have been obtained in the last few

years. On the other hand, nontrivial lower bounds for permanents of

(0, 1) matrices in terms of row sums, column sums, or some other

simple functions of the matrix, are difficult to establish. Indeed the

permanent of an «-square (0, 1) matrix may be zero although all its

row sums are « — 1.

The first result improving the lower bound in (1) was obtained by

P. Hall [3]. In the context of «-square (0, 1) matrices, Hall's theorem

states that per(^4)>0 if and only if every kXn submatrix of A,

k=l, • • • , «, contains at least k nonzero columns.

M. Hall [2] improved the above result and showed that if A is an

«-square (0, 1) matrix with a positive permanent and if r.-^i,

* = 1, • • • , «, for some positive integer t, then

(2) per(^) ^ il.

The inequality (2) does not provide a good lower bound if « is sub-

stantially greater than t. In fact, it is known [8] that if every row
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sum and column sum of A is t and t^3, then per(A)^n. (See also

Theorem 2 below.)

W. Jurkat and H. J. Ryser [l] obtained the following bound

n

(3) per(v4) è IT max(0, n + 1 - i).
¿=i

A simple proof of (3) was given in [5] where the case of equality was

also discussed. Unfortunately the lower bound in (3) is often equal to

0, the trivial lower bound.

A new approach to the problem was recently provided by Sinkhorn

[8] who proved essentially the following result. Let A£ be the set of

w-square (0, 1) matrices with exactly k positive entries in each row

and column. Let k = 3m + r where m and rare integers, 0^r^2. Then

(4) per(A) j£ mn + r.

In the present paper I obtain a positive lower bound for perma-

nents of totally indecomposable w-square (0, 1) matrices:

(5) ptr(A) £ ( £ «<A - 2n + 2.

From (5) I deduce the inequality for matrices in A*,

(6) per(,4) ^ n(k - 2) + 2

which is better than the bound in (4).

2. Results. A nonnegative w-square matrix (i.e., a matrix all of

whose entries are nonnegative) is called partly decomposable if it

contains an sX(n — s) zero submatrix, i^s^n — 1. Otherwise, it is

said to be fully indecomposable. The following characterization of fully

indecomposable matrices is often useful.

Lemma 1. A nonnegative n-square matrix A, w^2, is fully indecom-

posable if and only if every (n — V)-square submatrix of A has a positive

permanent.

Proof. The permanent of an (w —1) -square nonnegative matrix

is zero if and only if every diagonal of the matrix contains a zero, and

hence, by the Frobenius-König theorem, if and only if the matrix

contains an sX(n— s) zero submatrix. The lemma follows.

Corollary 1. If A is a fully indecomposable matrix and aw>0, then

(V) ptr(A) > per(A - Ehk)
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iwhere Ehk denotes the nXn matrix with 1 as its (A, k) entry and zeros

elsewhere).

Proof. Let A(h\k) denote the submatrix obtained from A by

deleting the hth row and the &th column of A. Expanding the perma-

nent of A by its hth row, we have

per(^) = per(A - Ehh) + ahkper(A(h\ k))

> per(A - Ehh).

The inequality is strict since A is fully indecomposable and thus, by

Lemma 1, per(4(/î| k))>0.

Corollary 2. // A is a fully indecomposable (0, 1) matrix and

aht = 0, then

(8) pev(A + Ehh) è per(4) + 1.

Proof. We have

per(^ + Enk) = pex(A) + per(.4(A| k))

> ptr(A) + 1,

since by Lemma 1, per (A(h\k)) is positive and A(h\k) is a (0, 1)

matrix.

A nonnegative matrix is called nearly decomposable if it is fully

indecomposable and if it has the property that the replacing of any

positive entry by 0 results in a partly decomposable matrix.

Sinkhorn and Knopp [7] obtained the following remarkable result

on the structure of nearly decomposable matrices.

Lemma 2. If A is a nonnegative n-square matrix, «>1, then there

exist permutation matrices P and Q such that

(9) PAQ

'A,

E2

0

0

-4 2

E3

0

0

A,

0

0

0

0

0

0

0

Ei

0

0

£.-1  A,-! 0

0       Es     A.J

where s2:2, each Ai is a nearly decomposable square matrix and each £,;

has exactly one positive entry.

For proof see [7].
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Before we proceed to our main theorem, we prove the following

simple auxiliary result.

Lemma 3. Let wi, • • • , ns and <ri, • • • , a,, s ^2, be positive integers

satisfying o-< = w< = l or di^2ni,for each i, i = l, • • • , s. Then

É («r* - 2m + 2) + 1 ̂  £ fa - 2«,- + 2) - 5 + 2.
j=i t=i

Proof. Use induction on s. If a-,- — 2w<+2 2:2 for all j, the result is

quite trivial, since in this case

Ê (o-i - 2m + 2) + 1 ^ £ (o-i -2m+2) + l
1=1 1=1

> £ (<r,- -2m+2) -s + 2.
»=i

Suppose then that o-¿ —2w, +2 = 1 for some i. We can assume without

loss of generality that <rs —2ws-f-2 = 1. If s = 2 we have

(o-i — 2wi + 2)(<r2 — 2w2 + 2) + 1 = (en — 2wi + 2) + 1

= (o-i - 2m + 2) + (<r2 - 2n2+ 2) - 2 + 2.

Next, we assume that for s^3,

8—1 »— 1

II (<r< - im + 2) + i ^ £ (m - 2m +2)-(s-\) + 2
i=l 1=1

and that a, — 2ns + 2 = 1. It follows that

s a—1

II fa - 2m + 2) + 1 = n fa - 2m + 2) + 1
i=l i=l

s-1

£ £f>i-2n,+ 2)-(i-l) + 2

8

- £ (°-¿ — 2»i + 2) — 5 + 2.
•=i

The lemma is proved.

We now use Lemma 2 to obtain lower bound (5) for permanents of

fully indecomposable (0, 1) matrices. Let o~(X) denote the sum of all

entries of matrix X.

Theorem 1. // A = (ay) is a fully indecomposable n-square (0, 1)
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matrix, then

(10) per(^) ^ o-iA) - In + 2.

Proof. First suppose that A is nearly decomposable. Then, by

Lemma 2, there exist permutation matrices P and Q such that PAQ

is of form (9). We use induction on ». If « = 1 or 2, then (10) is ac-

tually an equality. Assume that (10) holds for all nearly decomposable

¿-square matrices with t<n. Let A < be WjX«¿, i = 1, • • -, 5. Then, by

Corollary 2, the induction hypothesis, and Lemma 3, we have

S

pexiA) = per(P¿0 ^ JJ per(¿,-) + 1

8

^ II(^.)-2m,+ 2) + 1
»•=1

è Èi*iAt)-2nt+2)-s+2

= E *(A)i + s - 2 £ n< + 2 = <K¿) - 2n + 2.
1-1 «=1

This proves (10) in case A is nearly decomposable.

Now suppose that A is any fully indecomposable matrix. If A is

not nearly decomposable, there must exist a positive entry in A,

o,-,y1 = l, such that A— Eil¡í is a fully indecomposable (0, 1) matrix.

If A—Eiijl is not nearly decomposable, then there exists a positive

entry in A —EilJV ai2J1= 1, such that A — £¿U1 —£¿2;-a is fully indecom-

posable, and so on. Thus we must finally obtain a nearly decompos-

able matrix B satisfying
m

A = B + £ Etav
«-1

We can now use Corollary 2, m times, to conclude that

per(yl) è per(P) + m,

and hence applying inequality (10) to nearly decomposable matrix B

we have

per(^) j> o-(P) - 2« + 2 4- m.

But o-(P)4-w = o-(^4) and thus

per(A) St o-iA) - 2n + 2.

This concludes the proof of Theorem 1.
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The bound in Theorem 1 cannot be usefully applied to the case of

decomposable (0, 1) matrices. However, if A belongs to a more re-

stricted class of (0, 1) matrices then a significant lower bound can be

deduced from Theorem 1, even when A is decomposable.

Let A^ denote the set of w-square (0, 1) matrices each with exactly

k ones in each row and column. In a recent paper [8] Sinkhorn proved

that if A EAjj then

(11) per(A) ^ n,

and he concluded that

lim ( Inf  per(^) 1 = + °°.
»->»    VleAn /

This answered in the affirmative a conjecture of M. Hall. In our next

theorem we improve inequality (11).

Theorem 2. If A EK then

(12) per(^) ^ n(k - 2) + 2.

Proof. If A is fully indecomposable then (12) holds by virtue of

Theorem 1 since ff(A) =nk. If A is partly decomposable, then there

exist permutation matrices P and Q such that

r^i   ° 1

where Ai is w,-square, i= 1, 2. Since each row sum in Ai is k, it follows

that o(Ai)= mk and thus all the positive entries in the first Wi columns

of PAQ are inAi, and A3 must be 0. Hence

PAQ= Ai+ A2

where AiE^ and A2E^M- If k = l, then the theorem is trivial.

Assume therefore that k 2ï 2 and use induction on w. We have

per(^) = per(^x) per(A2)

^ (m(k - 2) + 2)(n2(k - 2) + 2)

> («i + n2)(k -2) + 2 = n(k-2) + 2.

This concludes the proof of Theorem 2.
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