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1. Introduction. Let Pi and P2 be bounded simply connected

domains in the complex plane each containing the origin and let D

be the component of PiP\P2 which contains the origin. It is clear

that D is simply connected. Let { PF«}^,! and { Vn} "=i be complete

orthonormal sets in the spaces P2(Pi) and P2(P2) respectively (if G

is a domain then P2(G) is the space of functions/ analytic in G with

ffa\f\ 2< °°)- In this paper we show that the set { Wn: «= 1, 2, • • • }
U{F„:k = 1,2, • • • }, with the domain restricted to D in each case,

spans L2(D). This means that given functions/i and/2 which map Pi

and Di conformally onto the disk |z| <1 one can construct a func-

tion/ which maps D conformally onto the disk. This can be done as

follows. Obtain { Wn}n"_i and { Vn} ",x from/i and/2 [3, p. 247] then

construct a complete orthonormal set {<2^}T-1 for L2(D). The Berg-

man kernel function K(z, f) for D is

K(z, f) = £ QntàQffî.

We may then choose/so that/(0) = 0 andf(z) = (ir/K(0,0))1'2 K(z, 0).

We observe that the result is clearly true in case the complements

of Pi and Di are closed domains. In this case the set {zn:« = 0,1, • • •}

spans each of P2(Pi), P2(P2) and P2(P), [2] and [3, p. 254].

2. Proof of the Theorem. Let fh /2 and / be functions which map

Pi, Di and D respectively onto the disk | z| < 1 with/i(0) =/2(0) =/(0)

= 0. Suppose gQL2(D). Since {(«4-l/7r)1'2/"(z)/'(z)} ",0 is a complete

orthonormal set in L2(D) [3, p. 247] we may write

(1) g(z) = £ (n + lA)1/2i„/»(z)/'(2),       z G D,
m—O

the series being absolutely and uniformly convergent on compact

subsets of D and

(2) ff      U|2   =   £Un|2<~.
J  J D n=0
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Define

(3)       &(*) = E (» + WV*»/"«/'«,     o <p < i.
n=0

Lemma 1. P&ere exisfc ¿."(z) analytic in Di and gf(z) analytic in

D2 such that

(4) gp(z) = &   (z) + gp   (z)    wÄe» z E 7).

Proof. Let {r„}„°=1 be an increasing sequence of positive numbers

such that limn,w r„ = l. For 0<r<l, define

DT =fT(rfi(z)),       zEDi,

DT =f.\rf2(z)),       zED2,

D" =f\rf(z)), zED,

and let Cf, CC and C(r) be the corresponding boundaries. Let Dr be

the component of D^i^D^ which contains the origin and let {R„ } ™_i

be an increasing sequence of positive numbers such that limn^.M Rn = 1

and 7>(Ä"OT>r„, « = 1, 2, • • • . We thus have a sequence {DTn} of

domains such that Drn+lZ)DTn, [)ñ=iDr„ = D and a sequence {C(Bn) }„°=1

of closed curves contained in D such that 7>rn is contained in the in-

terior of C(Än> and for zEDTn and ^ECiRn),

(5) min | f - z | = M„ > 0,       « = 1, 2, • • • .

We now wish to find {T™} and {T™} such that T™VT™ = C™

and such that Y^HD^ and r^ni»^ are empty, «=1, 2, • • ■ .

This is accomplished by  setting  Y™ = CiR»> r\D%">  and  r® = C(ff»>
_T»U)x n •

For/ = l, 2, w=» = l, 2, • • •  and zEDf^, define

(6) Ä»..(s) = —-df.
2ti J r0>  f — z

Then when zGD,,, m^n we have

(7) &(z) = Am,B(z) + hm,n(z).

Further, if zE7>/"'n7)(r"') with we» and m = n' then

(8) /¿mJ,n(z) = h¿,„>(z).

We now fix » and show that  {hm,n}Z-n is a normal  family in
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P/"\ j = l> 2. Since the series (1) converges uniformly in Z5(Än), we

may write

(9) C.0) = £((* + DA)w pUw.(í; *),      2 G DiW.
*-0

; = 1, 2, where

a».»(a;*) = — I      —-#•
2xî Jr."1      f — z

1    /* w*
=- I -dw.

2«J/(r»)  /-»(») -z

ButwG/(r^) implies \w\ =Pm<l so

.   m .        If Uw |        1   r2*  dd 1
(10) | «£<K *) |   = - I 1—Lg       |      IT" IT"

2f//(ri)   Mn        2x^0     M„      If»

Now (9) and (10) imply

(11) | *£(*) |  =S £ ((* + 1)A)1 p k\bk\-~,       zQD(;n\
k=0 Mn

The series (11) converges by (2) and the fact that p<l. Hence for

fixed « and j = l, 2, the family {hn,n}Z=n 1S uniformly bounded in

DjTn) and is therefore a normal family. Let l\ be a subset of the posi-

tive integers such that {hfy. mQI\} converges to a function, say

h?, analytic in D^\ Let l\QI\ be such that {hfy. mQL2} converges

to hf analytic in P2ri>. Continuing in the same manner choose i„Ci»

so that {h%)n:mQI2n} converges to hf in D%n) and /»Ci»-! so that

{h™n:mQIn} converges to hf in D{{n\ Using (7) and (8), we then

conclude

gp(z)   = hn\Z) + hn\z)      if Z Q Drn,

Ä»    (z)  = k„> (z)      if Z G  Dj       n P,       .

Now define ¿» in P by gf(z) =h^(z) if zGPjrn). Then (12) implies

that gf is well defined and analytic in Dj (j = l, 2) and

&(z) = gp  0) + ft,  (z),       «G D.

Lemma 2. IFe way write

(13) A) = í>r[/y(2)f,
*-o
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the series being absolutely and uniformly convergent on compact subsets

of Dj,j = 1,2.

Proof. The function g(J)(ff1(w)) is analytic in \w\ <1 so g(i) iff1 (w))

= E"-o a¿J)w* and setting z=ffl(w), (13) follows.

Now let {lFn}"_i and { Vn}"-i be complete orthonormal sets in

L2(Di) and L2(D2) respectively. Let {Çn}T-i be an orthonormal set

in L2(D) obtained by choosing a maximal linearly independent set

from { Wn} \J { Vn} and orthonormalizing it.

Since [fi(z)]< j=l, 2 is bounded, f¡EL2iD¡), » = 0, 1, •• -, so we

may write

00

/"(z) = E ak.nQk(z),

(14)

fi(z) = E &*,n&(z),        z E 73,
t=i

the series converging uniformly and absolutely on compact subsets

of D. Hence

00 00 CO oo

&>(*)   =  Y^Yj Ctk,nQk(z) + J^^2 Ok,nQk(z)
n=0 k—1 n—0 A=l

00

= E P*Ö*W,       2 E 7).
Jb-l

The rearrangement is possible in (15) since the series (14) converge

absolutely on compact subsets of D.

Now let e>0 choose p so that

ff      U-&|2  =   E(1-Pn)2|*n|2<i.

It is known [l, p. 2] that JJß\g— En°=i cnQ„\2 is a minimum when

c„ = dn =  I  I     g(z)Qn(z)dxdy,       « = 1, 2, • • • .

Hence we have

\g -  E ¿»Q.     = g -  E ^Qn
«J  J D I n=l ^ J D I n-1
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This implies g(z) = £"=1 dnQn(z), zQD and that ^-íl^nl2
= ffD\g(z)\2 dxdy< oo. This proves the following theorem.

Theorem. The set {Qn}ñ-i *•* complete in L2(D).

3. Discussion. Two interesting questions remain open. Given

gQL2(D) it would be desirable to obtain f(1)(z) and g(2)(z) analytic in

Pi and D2 respectively so that

g(z) = g(1)(s) + g(2)(z),       2 G D.

However the present method does not yield this result. It seems

necessary to use gp(z) in order to obtain normal families. Then gp(z)

can be written in the form (4).

A second open question is whether we may require gpi)QL2(Dj), j

= 1, 2 in (4).
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