ON THE KERNEL FUNCTION FOR THE INTERSECTION OF TWO SIMPLY CONNECTED DOMAINS

TED J. SUFFRIDGE1

1. Introduction. Let D_1 and D_2 be bounded simply connected domains in the complex plane each containing the origin and let D be the component of $D_1 \cap D_2$ which contains the origin. It is clear that D is simply connected. Let $\{W_n\}_{n=1}^{\infty}$ and $\{V_n\}_{n=1}^{\infty}$ be complete orthonormal sets in the spaces $L^2(D_1)$ and $L^2(D_2)$ respectively (if G is a domain then $L^2(G)$ is the space of functions f analytic in G with $\iint_G |f|^2 < \infty$). In this paper we show that the set $\{W_n : n = 1, 2, \cdots\}$ with the domain restricted to D in each case, spans $L^2(D)$. This means that given functions f_1 and f_2 which map f_2 and f_3 which map f_4 and f_4 conformally onto the disk |z| < 1 one can construct a function f which maps f_4 conformally onto the disk. This can be done as follows. Obtain $\{W_n\}_{n=1}^{\infty}$ and $\{V_n\}_{n=1}^{\infty}$ from f_1 and f_2 [3, p. 247] then construct a complete orthonormal set $\{Q_n\}_{n=1}^{\infty}$ for $L^2(D)$. The Bergman kernel function f is

$$K(z,\zeta) = \sum_{n=1}^{\infty} Q_n(z) \overline{Q_n(\zeta)}.$$

We may then choose f so that f(0) = 0 and $f'(z) = (\pi/K(0,0))^{1/2} K(z,0)$. We observe that the result is clearly true in case the complements of D_1 and D_2 are closed domains. In this case the set $\{z^n : n = 0, 1, \dots\}$ spans each of $L^2(D_1)$, $L^2(D_2)$ and $L^2(D)$, [2] and [3, p. 254].

2. **Proof of the Theorem.** Let f_1 , f_2 and f be functions which map D_1 , D_2 and D respectively onto the disk |z| < 1 with $f_1(0) = f_2(0) = f(0) = 0$. Suppose $g \in L^2(D)$. Since $\{(n+1/\pi)^{1/2} f^n(z) f'(z)\}_{n=0}^{\infty}$ is a complete orthonormal set in $L^2(D)$ [3, p. 247] we may write

(1)
$$g(z) = \sum_{n=0}^{\infty} (n + 1/\pi)^{1/2} b_n f^n(z) f'(z), \quad z \in D,$$

the series being absolutely and uniformly convergent on compact subsets of D and

(2)
$$\iint_{D} |g|^{2} = \sum_{n=0}^{\infty} |b_{n}|^{2} < \infty.$$

Presented to the Society, January 26, 1969; received by the editors October 14, 1968.

¹ This research was supported by NSF Grant GP 8225.

Define

(3)
$$g_{\rho}(z) = \sum_{n=0}^{\infty} (n + 1/\pi)^{1/2} \rho^n b_n f^n(z) f'(z), \qquad 0 < \rho < 1.$$

LEMMA 1. There exists $g_{\rho}^{(1)}(z)$ analytic in D_1 and $g_{\rho}^{(2)}(z)$ analytic in D_2 such that

[July

(4)
$$g_{\rho}(z) = g_{\rho}^{(1)}(z) + g_{\rho}^{(2)}(z) \quad \text{when } z \in D.$$

PROOF. Let $\{r_n\}_{n=1}^{\infty}$ be an increasing sequence of positive numbers such that $\lim_{n\to\infty} r_n = 1$. For 0 < r < 1, define

$$D_1^{(r)} = f_1^{-1}(rf_1(z)), z \in D_1,$$

$$D_2^{(r)} = f_2^{-1}(rf_2(z)), z \in D_2,$$

$$D^{(r)} = f^{-1}(rf(z)), z \in D,$$

and let $C_1^{(r)}$, $C_2^{(r)}$ and $C^{(r)}$ be the corresponding boundaries. Let D_r be the component of $D_1^{(r)} \cap D_2^{(r)}$ which contains the origin and let $\{R_n\}_{n=1}^{\infty}$ be an increasing sequence of positive numbers such that $\lim_{n\to\infty} R_n = 1$ and $D^{(R_n)} \supset \overline{D}_{r_n}$, $n=1, 2, \cdots$. We thus have a sequence $\{D_{r_n}\}$ of domains such that $D_{r_{n+1}} \supset D_{r_n}$, $\bigcup_{n=1}^{\infty} D_{r_n} = D$ and a sequence $\{C^{(R_n)}\}_{n=1}^{\infty}$ of closed curves contained in D such that \overline{D}_{r_n} is contained in the interior of $C^{(R_n)}$ and for $z \in D_{r_n}$ and $\zeta \in C^{(R_n)}$,

(5)
$$\min |\zeta - z| = M_n > 0, \qquad n = 1, 2, \cdots.$$

We now wish to find $\left\{\Gamma_n^{(1)}\right\}$ and $\left\{\Gamma_n^{(2)}\right\}$ such that $\Gamma_n^{(1)} \cup \Gamma_n^{(2)} = C^{(R_n)}$ and such that $\Gamma_n^{(1)} \cap D_1^{(r_n)}$ and $\Gamma_n^{(2)} \cap D_2^{(r_n)}$ are empty, $n=1,\ 2,\ \cdots$. This is accomplished by setting $\Gamma_n^{(1)} = C^{(R_n)} \cap D_2^{(r_n)}$ and $\Gamma_n^{(2)} = C^{(R_n)} - \Gamma_n^{(1)}$.

For $j=1, 2, m \ge n=1, 2, \cdots$ and $z \in D_i^{(r_n)}$, define

(6)
$$h_{m,n}^{(j)}(z) = \frac{1}{2\pi i} \int_{\Gamma_m^{(j)}} \frac{g_{\rho}(\zeta)}{\zeta - z} d\zeta.$$

Then when $z \in D_{r_n}$, $m \ge n$ we have

(7)
$$g_{\rho}(z) = h_{m,n}^{(1)}(z) + h_{m,n}^{(2)}(z).$$

Further, if $z \in D_1^{(r_n)} \cap D^{(r_{n'})}$ with $m \ge n$ and $m \ge n'$ then

(8)
$$h_{m,n}^{(j)}(z) = h_{m,n'}^{(j)}(z).$$

We now fix n and show that $\{h_{m,n}^{(j)}\}_{m=n}^{\infty}$ is a normal family in

 $D_j^{(r_n)}$, j=1, 2. Since the series (1) converges uniformly in $\overline{D}^{(R_n)}$, we may write

(9)
$$h_{m,n}^{(j)}(z) = \sum_{k=0}^{\infty} ((k+1)/\pi)^{1/2} \rho^{k} b_{k} a_{m,n}^{(j)}(z;k), \qquad z \in D_{j}^{(r_{n})},$$

j=1, 2, where

$$a_{m,n}^{(j)}(z;k) = \frac{1}{2\pi i} \int_{\Gamma_n^{(j)}} \frac{f^k(\zeta)f'(\zeta)}{\zeta - z} d\zeta.$$

$$= \frac{1}{2\pi i} \int_{f(\Gamma_n^{(j)})} \frac{w^k}{f^{-1}(w) - z} dw.$$

But $w \in f(\Gamma_m^{(j)})$ implies $|w| = R_m < 1$ so

(10)
$$\left| a_{m,n}^{(j)}(z;k) \right| \leq \frac{1}{2\pi} \int_{f(z)^{\frac{j}{2}}} \frac{\left| dw \right|}{M_{\pi}} \leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{d\theta}{M_{\pi}} = \frac{1}{M_{\pi}}.$$

Now (9) and (10) imply

$$(11) \qquad \left| h_{m,n}^{(j)}(z) \right| \leq \sum_{k=0}^{\infty} \left((k+1)/\pi \right)^{1/2} \left| b_k \right| \cdot \frac{1}{M_n}, \qquad z \in D_j^{(r_n)}.$$

The series (11) converges by (2) and the fact that $\rho < 1$. Hence for fixed n and j=1, 2, the family $\{h_{m,n}^{(j)}\}_{m=n}^{\infty}$ is uniformly bounded in $D_j^{(r_n)}$ and is therefore a normal family. Let I_1^1 be a subset of the positive integers such that $\{h_{m,1}^{(1)}: m \in I_1^1\}$ converges to a function, say $h_1^{(1)}$, analytic in $D_1^{(r_j)}$. Let $I_1^2 \subset I_1^1$ be such that $\{h_{m,1}^{(2)}: m \in I_1^2\}$ converges to $h_1^{(2)}$ analytic in $D_2^{(r_j)}$. Continuing in the same manner choose $I_n^2 \subset I_n^1$ so that $\{h_{m,n}^{(2)}: m \in I_n^2\}$ converges to $h_n^{(2)}$ in $D_2^{(r_n)}$ and $I_n^1 \subset I_{n-1}^2$ so that $\{h_{m,n}^{(2)}: m \in I_n^1\}$ converges to $h_n^{(1)}$ in $D_1^{(r_n)}$. Using (7) and (8), we then conclude

(12)
$$g_{\rho}(z) = h_n^{(1)}(z) + h_n^{(2)}(z) \quad \text{if } z \in D_{r_n}, \\ h_n^{(j)}(z) = h_{n'}^{(j)}(z) \quad \text{if } z \in D_i^{(r_n)} \cap D_i^{(r_{n'})}.$$

Now define $g_{\rho}^{(j)}$ in D by $g_{\rho}^{(j)}(z) = h_n^{(j)}(z)$ if $z \in D_j^{(r_n)}$. Then (12) implies that $g_{\rho}^{(j)}$ is well defined and analytic in D_j (j=1, 2) and

$$g_{\rho}(z) = g_{\rho}^{(1)}(z) + g_{\rho}^{(2)}(z), \quad z \in D.$$

LEMMA 2. We may write

(13)
$$g_{\rho}^{(j)}(z) = \sum_{k=0}^{\infty} a_k^{(j)} [f_j(z)]^k,$$

the series being absolutely and uniformly convergent on compact subsets of D_i , j = 1, 2.

PROOF. The function $g_{\rho}^{(j)}(f_j^{-1}(w))$ is analytic in |w| < 1 so $g^{(j)}(f_j^{-1}(w)) = \sum_{k=0}^{\infty} a_k^{(j)} w^k$ and setting $z = f_j^{-1}(w)$, (13) follows. Now let $\{W_n\}_{n=1}^{\infty}$ and $\{V_n\}_{n=1}^{\infty}$ be complete orthonormal sets in

Now let $\{W_n\}_{n=1}^{\infty}$ and $\{V_n\}_{n=1}^{\infty}$ be complete orthonormal sets in $L^2(D_1)$ and $L^2(D_2)$ respectively. Let $\{Q_n\}_{n=1}^{\infty}$ be an orthonormal set in $L^2(D)$ obtained by choosing a maximal linearly independent set from $\{W_n\} \cup \{V_n\}$ and orthonormalizing it.

Since $[f_j(z)]$, j=1, 2 is bounded, $f_j^n \in L^2(D_j)$, n=0, 1, \cdots , so we may write

(14)
$$f_{1}^{n}(z) = \sum_{k=1}^{\infty} a_{k,n} Q_{k}(z),$$

$$f_{2}^{n}(z) = \sum_{k=1}^{\infty} b_{k,n} Q_{k}(z), \qquad z \in D,$$

the series converging uniformly and absolutely on compact subsets of D. Hence

(15)
$$g_{\rho}(z) = \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} a_{k,n} Q_{k}(z) + \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} b_{k,n} Q_{k}(z) \\ = \sum_{k=1}^{\infty} P_{k} Q_{k}(z), \quad z \in D.$$

The rearrangement is possible in (15) since the series (14) converge absolutely on compact subsets of D.

Now let $\epsilon > 0$ choose ρ so that

$$\int\!\!\int_{D} |g-g_{\rho}|^{2} = \sum_{n=0}^{\infty} (1-\rho^{n})^{2} |b_{n}|^{2} < \epsilon.$$

It is known [1, p. 2] that $\iint_D |g - \sum_{n=1}^{\infty} c_n Q_n|^2$ is a minimum when

$$c_n = d_n = \int\!\!\int_{D} g(z)\overline{Q_n(z)}dxdy, \qquad n = 1, 2, \cdots.$$

Hence we have

$$\iint_{D} \left| g - \sum_{n=1}^{\infty} d_{n} Q_{n} \right|^{2} \leq \iint_{D} \left| g - \sum_{n=1}^{\infty} P_{n} Q_{n} \right|^{2}$$
$$= \iint_{D} \left| g - g_{\rho} \right|^{2} < \epsilon.$$

This implies $g(z) = \sum_{n=1}^{\infty} d_n Q_n(z)$, $z \in D$ and that $\sum_{n=1}^{\infty} |d_n|^2 = \iint_D |g(z)|^2 dxdy < \infty$. This proves the following theorem.

THEOREM. The set $\{Q_n\}_{n=1}^{\infty}$ is complete in $L^2(D)$.

3. Discussion. Two interesting questions remain open. Given $g \in L^2(D)$ it would be desirable to obtain $g^{(1)}(z)$ and $g^{(2)}(z)$ analytic in D_1 and D_2 respectively so that

$$g(z) = g^{(1)}(z) + g^{(2)}(z), \quad z \in D.$$

However the present method does not yield this result. It seems necessary to use $g_{\rho}(z)$ in order to obtain normal families. Then $g_{\rho}(z)$ can be written in the form (4).

A second open question is whether we may require $g_{\rho}^{(j)} \in L^2(D_j)$, j = 1, 2 in (4).

REFERENCES

- 1. S. Bergman, The kernel function and conformal mapping, Math. Surveys No. 5, Amer. Math. Soc., Providence, R. I., 1950.
- 2. O. Farrell, On approximation to analytic functions by polynomials, Bull. Amer. Math. Soc. 40 (1934), 908-914.
 - 3. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
- 4. M. Schiffer and D. C. Spencer, Functionals of finite Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1954, pp. 262-272.

University of Kentucky