ON THE KERNEL FUNCTION FOR THE
INTERSECTION OF TWO SIMPLY
CONNECTED DOMAINS

TED J. SUFFRIDGE!

1. Introduction. Let D; and D, be bounded simply connected
domains in the complex plane each containing the origin and let D
be the component of DiMN\D, which contains the origin. It is clear
that D is simply connected. Let { W}, and {V.}: be complete
orthonormal sets in the spaces L?(D,) and L2?(D,) respectively (if G
is a domain then L2(G) is the space of functions f analytic in G with
JS|f|2< ©). In this paper we show that the set { Wa:n=1,2, - - - }
U{ Verin=1,2,-- - },with the domain restricted to D in each case,
spans L2(D). This means that given functions fi and f, which map D,
and D; conformally onto the disk |z| <1 one can construct a func-
tion f which maps D conformally onto the disk. This can be done as
follows. Obtain {W,}2, and {V.};, from f; and f; [3, p. 247] then
construct a complete orthonormal set {Q,.}:_ \ for L?(D). The Berg-
man kernel function K(z, ¢) for D is

K(Z, g-) = Z Qn(z)Qn(g—)'
n=1
We may then choose f so that f(0) =0and f'(z) = (/K (0, 0)) V2 K(z, 0).

We observe that the result is clearly true in case the complements
of D; and D; are closed domains. In this case the set {z":#=0,1, - - -}
spans each of L2(D;), L¥*(D;) and L*(D), [2] and [3, p. 254].

2. Proof of the Theorem. Let f1, fo and f be functions which map
D;, Dy and D respectively onto the disk | 2| <1 with £1(0) =£2(0) =f(0)
=0. Suppose g& L*(D). Since { (n+1/7)12 f~(2)f' (3) },‘f_o is a complete
orthonormal set in L*(D) [3, p. 247] we may write

) 56 = 3+ 1n PO, 5ED,

the series being absolutely and uniformly convergent on compact
subsets of D and

@ ffplglz=glb,.l2<w.
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Define

0

®3) 63 = 2 (0 + 1/2) 2, fr()f (), 0 <p < 1.

n=0

LeMMA 1. There exists g (2) analytic in Dy and g2 (z) analytic in

D, such that
) 0 =@ + g7 whensz € D.

ProoF. Let {rn},“,", | be an increasing sequence of positive numbers
such that lim,., 7.=1. For 0<r<1, define

(r)

D = fi (fi(2), =€ Dy
D = £ tfa(3), 2E Dy
p” =), €D,

and let C?, C” and C® be the corresponding boundaries. Let D, be
the component of D’ N\D}’ which contains the origin and let {R,},
be an increasing sequence of positive numbers such that lim,.. R,=1
and D(R"’Dﬁ,n, n=1, 2, ---. We thus have a sequence {D,n} of
domains such that D, , DD, , Us-1 Dr,=D and a sequence {caml
of closed curves contained in D such that D, is contained in the in-
terior of C®» and for & D,, and { & CE»),

©) min| ¢ —z| =M, >0, n=1,2---.

We now wish to find {T'®} and {T®} such that TPUTP = C®&»
and such that T \D'® and T@ND{” are empty, n=1, 2, - - -.
This is accomplished by setting I'> =CE>ND{» and I'P = CEw»
—TP.

Forj=1,2,m2n=1,2, - - - and zED;", define

©) W - =0

) [6)] —_—
2w r? {— 2

das.

Then when 2ED,,, mZn we have
e} @

) £:(2) = hmn(2) + hmn(2).
Further, if zED{® N\D"" with m 27 and m Zn’ then
@®) limn(®) = I (2)-

We now fix #n and show that {h,}x., is a normal family in
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Dj», j=1, 2. Since the series (1) converges uniformly in D®», we
may write

o0

©)  hn(@ = X ((k + 1)/7)

k=0

U2k G (r)
P biamn(z; k), 2E D;7,

i=1, 2, where
) 1 k()
by = —— [T
wiJ o -
1 wk
- — i

2rid ;0 fH(w) — 3

But wEf(T'Y) implies || =Rn.<1 so
@) 1 l dwl 1 T d 1
10 laxehl s, [ < -
2rdyrly, M, 2rJy M, M,

Now (9) and (10) imply

1/2 k (rs)

i > 1
(A1) | hn(® | gkz«k+1>/«>p o] o0 z€ D

The series (11) converges by (2) and the fact that p<1. Hence for
fixed #» and j=1, 2, the family {hﬁ,f,,};,,, is uniformly bounded in
Dj” and is therefore a normal family. Let I} be a subset of the posi-
tive integers such that {s;: mEILL} converges to a function, say
ki, analytic in D{"”. Let I;CI; be such that {A2: mEI?} converges
to A{? analytic in D{”. Continuing in the same manner choose I2CI}
so that {#2,: mEI2} converges to A2 in DY” and ILCI?_, so that
{hD,: mEIL} converges to AP in D{™. Using (7) and (8), we then
conclude

8(2) =k (@) + b (5) ifz€ Dy,
12 . ) y -,
(12 by (3) = bt (2) itz € D™ N D",
Now define g in D by g?(z) =h{(z) if z&D{™. Then (12) implies
that g is well defined and analytic in D; (j=1, 2) and
m @
&(3) =g (3 +g (), z& D.
LEMMA 2. We may write
%) — () k
(13) & @ =2 e )],

k=0
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the series being absolutely and uniformly convergent on compact subsets
Of D 7 j =1 , 2.

ProoF. The function g? (f;(w)) is analytic in | w| <1 so g@ (f; *(w))
=D 2 o aPw* and setting z =f; ' (w), (13) follows.

Now let {W,,},T=1 and {V,,},T_l be complete orthonormal sets in
L2(D;) and L2(D,) respectively. Let {Q,.},‘:°_1 be an orthonormal set
in L2(D) obtained by choosing a maximal linearly independent set
from {W,}\U{V.} and orthonormalizing it.

Since [f;(2)], =1, 2 is bounded, f;E€L*D,),n=0,1, - - -, so we
may write

ﬁ@=§%@@

(14) B
f2(5) = 2 biaQe(®), 2 E D,

k=1

the series converging uniformly and absolutely on compact subsets
of D. Hence

60 = 32 2 0@ + 30 32 brnal)
(15) n:O k=1 n=0 k=1
= Z Pka(Z), 2 E D.

The rearrangement is possible in (15) since the series (14) converge
absolutely on compact subsets of D.
Now let ¢>0 choose p so that

ffp lg— gl = fj(l — 2| b2 <e

n=0

It is known [1, p. 2] that [/p|g— D 1 caQa| ? is 2 minimum when

Hence we have

I,

2

Cn = dn = ffD £(2)0a(3)dxdy, n=12-.
§— i P,Qn

=[] 2
=ffp|g—gp|2<e-

§— Z dxQn

n=1
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This implies g(z)= D ., d:0x(2), 2ED and that D ., |da|?
=f/ DI g(z)I 2 dxdy< «. This proves the following theorem.

THEOREM. The set {Q,,},‘:’_l 1s complete in L*(D).

3. Discussion. Two interesting questions remain open. Given
gEL%(D) it would be desirable to obtain g™ (z) and g®(z) analytic in
D, and D, respectively so that

g(z) = gW(2) +¢g®(), =s€&D.

However the present method does not yield this result. It seems
necessary to use g,(z) in order to obtain normal families. Then g,(z)
can be written in the form (4).
A second open question is whether we may require g’ €L¥(D;), j
=1, 2 in (4).
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