A NOTE ABOUT WIENER-HOPF SETS
GERARD LETAC

DEeFINITION. A Wiener-Hopf set is a subset S of the real line R
such that

(i) St and S— are not empty,

(i) S*+S-CS,
where STHUS%U S is the usual decomposition of Sinto positive, nega-
tive and null parts.

Let us explain this definition: Considering a probability measure
uon R, the Wiener-Hopf decomposition of u is given by:

1) €0 —p=(1—a)le— p)* (e — ph)

where the star indicates convolution, € is the unit massat0,0=a =1,
and pt and u— are positive measures of mass not larger than one
concentrated on R*= {x: x>0} and R—= {x: x<0}. The measure
u— (resp. ut) has a probabilistic interpretation as a distribution of
the first visit to R~ (resp. R*) of the random walk S, =X+ - - - 4+ X,
where X, - - -, X, are independent random variables with the same
distribution u; the number « is the probability that the first visit to
R+*U{0} (or R-U{0}) is to 0. See Feller [1] for details.
(1) can be rewritten:

(2) p=ae+ (1 —a)(ut+u —ut*u)
This formula gives us two examples of Wiener-Hopf sets.

ProposiTiON 1. If p(R*) and u(R~) are positive the support of
ae+ut+u= is a Wiener-Hopf set.

ProoF. Let us denote by S(¥) the support of any measure », that
is to say the smallest closed subset of R carrying the whole mass of ».
If STUSUS—=S=S(aee+ut+u-) is the decomposition on R+, 0,
R~ of S, we have S(ut) DStand S(u—) D S-. u positive implies, by (2),
SOSut*u~). But St*u)DSu*)+Sk™). Then St+S-CS.
Since by hypothesis St and S~ are not empty, S is a Wiener-Hopf
set.

Let us denote by », the atomic part of any measure ».

PRrROPOSITION 2. If us(R*) and p,(R™) are positive the set of atoms of
aeot+ut+u~ is a Wiener-Hopf set.
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PROOF. (2) implies us =aeo+ (1 —a) (uF +u; —ps * ;) and the proof
goes in a similar way to that in Proposition 1.

We are led to consider Wiener-Hopf sets from the following ob-
served fact: Suppose S(u) is a set of integers. Then S(aeo+ut-+u)
has no holes, that is to say, it is an interval (not necessarily bounded)
of integers. A similar property holds when S(u) is not concentrated
on lattice points.

The aim of this note is to provide the proof of these results in the
following theorem:

THEOREM. If S is a Wiener-Hopf set, let p=inf {x: xGS‘f}. Either
p>0 and S/p is an interval of integers, or p=0 and the closure S of S
s an interval of R.

Let us introduce two useful notations: [x, y]z is the interval of
integers with end points x and y. When x<0 and y>0, let A(x, )
=[x, y]N {mx+ny: m, n nonnegative integers, m+n>0}. We need
now three lemmas:

LeMMA 1. If p and q are positive integers such that (p, q) =1, then
A(=p, 9=[~2, qlz

Proor. Easy, using Bezout identity.

LeEMMA 2. If x/y is irrational, A(x, v) is dense in [x, y].

Proor. Easy, using the fact that multiples of a positive irrational
number, taken modulo 1, are dense in [0, 1].

LEMMA 3. xES~ and yE ST imply A(x, y) CS.

Proor. We use induction on N =m+n. Suppose that mx+ny&ES
for any m and # such that x Smx-+ny =<y and m4+n<N. This is true
for N=2. If x=mx+ny<y and m+n=N=2 then m=1, n=1,
(m—1)x+ny=0 and mx+ (n—1)y=<0. Clearly, at least one of these
two numbers (say, the first) is in [x, ¥] and by the induction hypothe-
sis, is in S. Hence either (m—1)x+ny&ES® and mx+ny=x&S, or
(m—1)x+nyESt and mx+ny&cS—+S+CS.

Proor oF THE THEOREM. Suppose p>0. We claim first p&S+. If
not, there exists a strictly decreasing sequence (y,) in S such that
Y na p- Since S~ is not empty choose x &S-. If there existed # such
that x/v, is irrational, by Lemmas 2 and 3 p would be 0. Hence x/y,
is rational for any #, and there exist A\,>0 and positive integers p,
and ¢, such that (p,, ¢.) =1 and x= —N,p, and ¥y,=X\.g,. But the
%/yn=pn/¢. being distinct, the sequence ¢, is not bounded, and there
exists a sequence 7; of integers such that ¢., 3o ®© and \,,—0. By
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Lemma 1, A(%, ¥n.) =Mn.[—Pne» qne)z and, by Lemma 3, p=0. Hence
p>0 implies pES*.
Choose x&S—. We show that x = —np where

n+1 =min {k:x + kp € S*}.

By Lemma 3, x4+np&ES-US. If x4+np&ES-, then x4+ (n41)p<p,
a contradiction. Hence x+np&S° Furthermore 0ES, A(x, p)
=p[—n, 1]sCS and —p=max {x:xES"}. Using the same proof
one can show that every element of S+ is a multiple of p, and S/p is
an interval of Z.

Suppose p=0. Let x&S~, ¢>0 and ¢ be such that x<f/<0. We
claim that (t—e¢, £)MNS— is not empty. There exists a strictly de-
creasing sequence (¥,) in S* such that y, ;2 0. Define k,, nonnegative
integer, and €, by t—x=Fk,y.+¢€, with 0=¢,<y.. If y, is such that
yn <€ then x+k,y,.E (t—¢, t). But by Lemma 3, x+k,y.&S~. Hence
S—is dense in [x, 0]. The proof for S* goes in the same way and the
closure of S is an interval of R.
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