
A NOTE ABOUT WIENER-HOPF SETS

GÉRARD LETAC

Definition. A Wiener-Hopf set is a subset S of the real line R

such that

(i) S+ and S~ are not empty,

(ii) s++s-cs,
where S+\JS°{JS~~ is the usual decomposition of S into positive, nega-

tive and null parts.

Let us explain this definition: Considering a probability measure

ß on R, the Wiener-Hopf decomposition of ß is given by:

(1) €0 - ß = (1 - a)(e0 - ß~) * (60 - ß+)

where the star indicates convolution, e0 is the unit mass at 0, 0 ^ a g 1,

and ß+ and ß~ are positive measures of mass not larger than one

concentrated on R+= {x: x>0} and R~= {x: x<0}. The measure

ß~ (resp. ß+) has a probabilistic interpretation as a distribution of

the first visit to R~ (resp. R+) of the random walk Sn = Xi + • • • -\-Xn

where Xi, • • • , Xn are independent random variables with the same

distribution ß\ the number a is the probability that the first visit to

i?+W{0} (or i?-W{0}) is to 0. See Feller [l] for details.

(1) can be rewritten:

(2) ß = ato + (1 — a)(ß+ + ß~ — ß+ * ß~)

This formula gives us two examples of Wiener-Hopf sets.

Proposition 1. // ß(R+) and ß(R~) are positive the support of

ato+ß+-\-ß" is a Wiener-Hopf set.

Proof. Let us denote by S(v) the support of any measure v, that

is to say the smallest closed subset of R carrying the whole mass of v.

If S+{US°US~ = S = S(aeo+ß++ß~) is the decomposition on R+, 0,

i?~of S, we have S(ß+)~DS+ and S(ß~)Z)S-. ß positive implies, by (2),

SDS(ß+*ß~). But S(ß+ * ß-)DS(jx+)+S(ß-). Then S++S~CS.
Since by hypothesis S+ and 5~ are not empty, 5 is a Wiener-Hopf

set.

Let us denote by va the atomic part of any measure v.

Proposition 2. If ßa(R+) and ßa(R~) are positive the set of atoms of

ae0-\-ß+-\-ß~ is a Wiener-Hopf set.
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Proof. (2) implies^„ = aeo+(l — «)0Í -\-nâ —MÍ *ßä) and the proof

goes in a similar way to that in Proposition 1.

We are led to consider Wiener-Hopf sets from the following ob-

served fact: Suppose 50) is a set of integers. Then ■S(aeo-|-M++At~)

has no holes, that is to say, it is an interval (not necessarily bounded)

of integers. A similar property holds when S(p.) is not concentrated

on lattice points.

The aim of this note is to provide the proof of these results in the

following theorem:

Theorem. // S is a Wiener-Hopf set, let p = ini \x: x£S+}. Either

p>0 and S/p is an interval of integers, or p = 0 and the closure S of S

is an interval of R.

Let us introduce two useful notations: [x, y]z is the interval of

integers with end points x and y. When x<0 and y>0, let ^4(x, y)

= [x, y\r\\mx-\-ny: m, n nonnegative integers, w-|-ra>0}. We need

now three lemmas:

Lemma 1. If p and q are positive integers such that (p, q) = l, then

A(-P,q) = [-P,q]z.

Proof. Easy, using Bezout identity.

Lemma 2. If x/y is irrational, A(x, y) is dense in [x, y].

Proof. Easy, using the fact that multiples of a positive irrational

number, taken modulo 1, are dense in [0, l].

Lemma 3. x£S"~ and y£5+ imply A(x, y)C.S.

Proof. We use induction on N = m-\-n. Suppose that mx-\-nyES

for any m and w such that x¿mx-\-ny fsy and m+n<N. This is true

for 7V=2. If x^mx + ny^y and m-\-n = N¡^2 then m^l, w^l,

(m — l)x+ray^0 and mx + (n — l)y^0. Clearly, at least one of these

two numbers (say, the first) is in [x, y] and by the induction hypothe-

sis, is in 5. Hence either (m — l)x + ray£5° and trax + ray = x£S, or

(m — l)x+ray£5+ and mx-\-nyES~ + S+(ZS.

Proof of the Theorem. Suppose p>0. We claim first p£5+. If

not, there exists a strictly decreasing sequence (y„) in 5 such that

yn7ÍP- Since S~ is not empty choose x£S~. If there existed ra such

that x/yn is irrational, by Lemmas 2 and 3 p would be 0. Hence x/yn

is rational for any ra, and there exist X„>0 and positive integers pn

and qn such that (pn, qn) = l and x= —~Knpn and yn=X„g„. But the

x/yn = pn/qn being distinct, the sequence qn is not bounded, and there

exists a sequence nk of integers such that qnt ¡^ oo and X„fc—»0. By



300 GÉRARD LETAC

Lemma 1, A(x, ynk) = X„t[ — pnt, qnk]z and, by Lemma 3, p = 0. Hence

p>0 implies pG-S+.

Choose xG-5-- We show that x= — np where

n + 1 = min {k: x + kp G S+}.

By Lemma 3, x+npES~^JS°. If x+wpG'S-, then x-f-(w-fT)p<p,
a contradiction. Hence x+wpG'S'0. Furthermore OG-S, A(x, p)

= p[ — n, l]zC>S and —p = max \x:xES~}. Using the same proof

one can show that every element of S+ is a multiple of p, and S/p is

an interval of Z.

Suppose p=0. Let xG-S-, e>0 and t be such that x</<0. We

claim that (t — e, t)C\S~ is not empty. There exists a strictly de-

creasing sequence (yn) in S+ such that yn ^ 0. Define kn, nonnegative

integer, and e„, by t— x = knyn-\-en with 0^en<yn. If yn is such that

yn<€ then x+k„yn(E.(t — e, /)• But by Lemma 3, x + ^n^nG^-- Hence

5~ is dense in [x, 0]. The proof for S+ goes in the same way and the

closure of S is an interval of R.
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