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1. Introduction. In this note we study the nullsets of abstract

homogeneous polynomials (a.h.p.) which are derived from given

a.h.p.'s by certain kinds of composition.

Except when otherwise indicated, these polynomials are defined

from E to K where K is an algebraically closed field (of characteristic

zero) and P is a linear vector space over K. If P„ denotes the family

of all of a.h.p. of degree «, then by definition [l, pp. 760-763] PQPn

implies that for all x, yGP and s, tQK,

(1.1) P(sx + ty) - £ Cn,kAk(x, y)skl»-k
i-0

where C„,k = n\/k\(n — k)l and where the Ak(x, y)QK, the Ak being

independent of 5 and t. The «th polar of P is defined from PXP

X ■ • • XE to K, as the form (P(xi, x2, • • • , x„) which is linear in

each xk, symmetric in the set {x*} and such that

(1.2) 6>(x, x, ■ ■ ■ , x) = P(x)

for all xGP- Ln terms of the «th polar the coefficients Ak of P are

given by the formulas

(1.3) Ak(x, y) = [<P(xi, • • • , -r„): xjsk = x, xj>k = y}.

If PQPn, the nullset ZP of P corresponding to given x, yGP, namely

(1.4) Zp = {sx + ty: P(sx + ty) = 0, sx + ty 9* 0},

belongs to sets that we shall specify by inequalities involving Hermi-

tian symmetric forms H(x, y). These forms may be defined as in the

complex plane, since we may write K = K0(i) where P0 is a maximally

ordered subfield of K and —i2 is the unit element in K and since there-

fore with each kQK we may associate a "conjugate" element kQK.

Thus H(x, y) satisfies the three requirements: H(x, y)QK for all

x, yGP, H(x, y) is linear in x for any fixed y and

(1.5) H(y, x) = H(x,y).
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The general aim of the present note is to describe the nullset of a

composite a.h.p. R relative to the nullsets of the a.h.p. from which

R was derived. The results obtained are analogous to some well-

known theorems on the zeros of composite polynomials in the com-

plex plane.

2. An apolarity-like relation. To aid our study of the composites

of two a.h.p. P and Q with P given by (1.1) and Q given similarly by

n

(2.1) Q(sx + ty) = 23 Cn¿Bk(x, y)xkln-k,

we introduce an operator <P(P, Q; x, £) defined by the relation

$(P,Q;sx + ty;<rZ + Tr,)

= 23 (-l)kCn,kAk(x, y)Bn-k(t, v)skt«-ko-"-kTk.
k-0

So defined, <£(P, Q; x, £) is an «th degree a.h.p. in x and in £. It is a

linear functional of P and of Q that has the following properties for

*. y,%, vEE; s, t,<x,TEK:

(2.3) *(P,Q;sx + ty;aS + m)eK,

(2.4) HQ, P; {,*) = (-1)»$(P, Q;x,S),

(2.5) 4>(P, Q; sx + tx; o-£ + nj) = P(x)Q(<rtt, - rstj).

The relations (2.3) and (2.4) are obvious. To deduce (2.5), we note

that, since PEP«, P(sx+tx) = (s+t)nP(x) and thus Ak(x, x) =P(x), for

all xEE and ¿ = 0, 1, • • • , ». Hence, from (2.2)

n

*(P, Ö; i* + te; at + rV) = P(x) 23 (- l)*Cn,A_4(f, ,)j»t-V*t*
i-0

= P(x)Q(att - tsV).

In particular, we learn from (2.5) that, for all x, CEE,

(2.6) 4>(P, Q;sx + tx; s£ + tQ = 0.

The operator $ has another property which we now state using the

assumption that K is algebraically closed and that hence we may

write Q in the form

(2.7) Q(si¡ + ft,) = fl («/» - 7*0,

where 8y«8y(£, t;)EA and Yy^Y/fê, ̂E-K" for £, t^ETí.
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Theorem (2.1). Let P, QQPn with Q(x) written inform (2.7). Then

for any £,-nQE

(2.8) $(P, Q; £ + V; Í + v) = <P(yit + «n?, 72£ + 52V, ■ ■ ■ , y„£ 4- «„*).

Thus, if Theorem (2.1) is valid, also

(2.8)' $(P, Q; 5X + ¿y, 5X + ty) = <P(j7iie 4- thy, • • • , 5y„x + tô„y).

By (2.4), if P(5X+¿y) = Iß (ftí-«*0,

(2.8)" 4>(P, Q; sx+ty, sx+ty) = (-l)»§(saix+tßiy, ■ ■ ■ , sa„x+tßny).

Proof. From (2.1) and (2.7), follows that

(2.9) Cn,kBk(t,v) = (-l)»-kSk

where Sk is the sum of all products obtained from [SA • • • 5tyi+17i+2

• • ■ 7n] by permuting the subscripts 1, 2, •• -, « in all possible

ways. On the other hand, using the fact that <P(xi, Xt, ■ ■ • , x„) is

linear in each x„, we find that

(P(yi£ + Ö117, • • • , 7n£ + Snij)

n

= £ 5n_t[(P(xi, • • •,*»): xíát = £, x,>* = 77]
t—0

= £ (-Y)kCn,kBn-k(i, v)Ak(S, V) = $(P, Q; ? 4- 9; { + vi)-
fc-0

The last line follows from (2.9) and (1.3).

3. Theorems on composite a.h.p. We now prove a number of

theorems on the nullsets of composite a.h.p. The first is analogous to

a corollary of Grace's theorem [2, pp. 62-63], cf. also [3].

Theorem (3.1). Let H(x, y) be a Hermitian symmetric form and let

(3.1) Pi = {x G E: H(x, x) g 0, x 9* 0}.

Let P, QQPn and let Zp and Zq be the nullsets of P and Q respectively

corresponding to given f, r¡QE. If ZpQEi and if Q be such that

(3.2) HP,Q;t + r,t + v) = 0,

then

ZQr\Ei9* 0.

Proof. If on the contrary Zcf\Ei = 0', then ZQQE—Ex. That is,

writing <2(x) as in (2.7) with the given Ç, 77, we conclude that

7*£ + «*i? G E - Ei   for k - 1, 2, • • • , ».
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We may now apply the following theorem due to Hörmander [3]:

If P(x)^0 for all xEE — Ei, then also (?(xi, x2, ■ ■ - , x„)t*0 for all

xkEE — Ei. We conclude that

(P(7i£ + in?, 7JÉ + s&, ■ • • , 7»S + i»ij) v* 0,

a result which contradicts (3.2) in view of Theorem (2.1). Thus,

Theorem (3.1) has been established.

We next develop a theorem analogous to a composition theorem

in the complex plane due to Szegö [2, pp. 65-66], namely: Let P(z)

= ES Cn,kAkzk, Q(z) = 23S Cn,kBkzk, R(z) = 23S Cn,kAkBkzk. Let Y be
any circular region containing the zeros of P. Then every zero of R has

the form (—ßy) where ß is a zero of Q and yEY. A counterpart in

vector space is the following:

Theorem (3.2). Let P, QEP* and REPin be defined by (1.1) and
(2.1) awo"

(3.3) R(sx + ly) = ¿ (- \)kCn,kAk(x, y)Bk(x, y)s2kt2^-k\

*>=o

Corresponding to given x, yEE such that Q(x)Q(y)^0, let Zp, Zq and

Zr be the nullsets of P, Q and R respectively. Let Ei be defined by (3.1).

If ZpEEi and if (ßX+i>y)EZR, then (¡x2x+v2y) belongs to the set

{ayx+ßdy} for alia, ß, y, 5EK such that

(3.4) ax + ßyE Eh       yx + hy E ZQ.

Proof. Let (fix+vy) be any zero of R. That is,

n

(3.5) RQtx + vy) = 23 (-l)*C..*^t(*, y)Bk(x, y)^** = 0.

Writing Q as in (2.1) and (2.7) and noting that

7iT2 • • • 7n5iS2 •••«»= (-l)»Bn(x, y)Bo(x, y) = (-l)"Q(x)Q(y) * 0,

we define Q*EPn by the relations

Q*(sx + ty) = E Cn,kB*k(x, y)skt"-k

(3.6) 7
= n ^5 - *kt)

i-l

with ôk* = v2ôk1 and y*=p.2y~l. Using notation similar to (2.9), we

find

Si82 • • • 5n7iys • • • ynS¡ = v2k¡x2^-»Sn-k.
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Hence

Bo(x,y)Bn(x,y)B*k(x,y) = ,VM,^(*, y).

We may now write equation (3.5) as

n

P(Mx 4- „y) = Bo(x, y)Bn(x, y) £ (-l)*Cn,*,4*(x, y)Bn-k(x, y) = 0.
i-0

Hence,

*(p,Ö*;* + y,* + y) = °-

From Theorem (3.1), we now infer that at least one zero ax+ßy

of Q* lies on Pi. From (3.6), for some value of k
* *

a = 7i = /^yr1,       ß = Sk = J^óT1.

That is, if jux-f-pyGZie, then

yu2x 4" v2y G {«7X 4- |S5y: ax + ßy Q Eu yx + by Q Zq}.

This completes the proof of Theorem (3.2).

4. Polynomials on vectors to vectors. So far we have considered

a.h.p. which assume values in a field K. We now extend Theorem

(3.1) to a.h.p. which assume values on a supportable subset of a

vector space G. A subset M of G is said to be supportable if to every

f G G —M there corresponds a linear form L(w) such thatP(f) =0 but

L(w)9*0 for wQM. (See [3].)

Theorem (4.1). Let E and G be vector spaces over K and let M be

a supportable subset of G. Let P and Q be a.h.p. defined on E to G.

Corresponding to given £, r¡QE, let

Ep = {si. + tvQ E: P(jf 4- lv) Q M},

PQ= {sï + tr, G P: Q(sS+tr,) Q M}.

Assume EP = E — Ei where Pi is defined by (3.1). For some ÇoQG — M

and the corresponding linear form L0(w), let Q be such that

(4.1) HLo(P), Lo(Q) ; i + v, $ + v) = 0.

Then

(4.2) (P - Ep) r\(E- Eq) 9* 0.

Remark. Theorem (4.1) is trivial if either EP = 0 or EQ = 0.

Proof. For every ÇQG — M and its corresponding L(w), both

P(P(x)) and P(<2(x)) are a.h.p. of degree « and

(4.3) P(P(x)) 9*0   for x G EP,       L(Q(x)) 9*0   for x Q EQ.
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Hence, Zl<.p)EE—Ep, Zl«dEE—Eq. Since (4.1) holds, Theorem
(3.1) implies (4.2), as was to be proved.
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