THE STRUCTURE OF B[c] AND EXTENSIONS OF THE
CONCEPT OF CONULL MATRIX
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Introduction. The algebra I' of conservative matrices is partitioned
by the ideal ¥ of conull matrices and the set of coregular matrices.
This paper is concerned with the problem of extending the concept
of conullity from I' to the algebra B[c] of bounded linear operators
on the space ¢ of convergent sequences. Since ¥ can be realized as the
kernel of a scalar homomorphism x on I (i.e., x is a linear functional
on I' so that x(4B)=x(4)x(B) for 4, BET'), one possibility is to
consider extensions of x in hopes that their kernels will be the natural
extensions of ¥. Wilansky [2, p. 250, Question 3] considers two such
extensions, x and p, and observes that they both fail to be a scalar
homomorphism on B[c]. By investigating the algebraic structure of
Blc] it is seen that, in a sense, Wilansky's extensions are the only
ones possible. For example, in §1 it is proved that the only subalge-
bras of B[c] which properly contain ¥ are T', p. (the kernel of p),
(the domain of p), and B|c]. In §3 it is proved that x is the only non-
zero scalar homomorphism on T, that p is the only nonzero scalar
homomorphism on £, and that there are no nonzero scalar homomor-
phisms on B[c]. From these facts we can conclude that p is the only
extension of x to a scalar homomorphism on a subalgebra of B[c].
Therefore, if we are to extend the concept of conullity by means of
scalar homomorphisms, then p; becomes the natural definition for
conullity in B[c].

Let M designate the multiplicative operators in B[c] (defined
below). Unlike the conull-coregular dichotomy in T', the dichotomy of
multiplicative and nonmultiplicative matrices cannot be effected by
a scalar homomorphism. We show that this behavior is retained in
subalgebras of B[c] containing MNT. For example, in §2 it is seen
that the only subalgebras of B[c] which properly contain MNT" are
T, MNQ, (defined below), MNQ, Q, M, and B[c]. Moreover, in §3 it
is proved that p and x are the only nonzero scalar homomorphisms
on any of the above subalgebras of M. Hence no one of these algebras
can be realized as the kernel of a scalar homomorphism on a larger
algebra.
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Definitions, notation, and background. ¢ is the Banach space of
convergent sequences x with ||x|| =sup |x:|. For *E¢, lim x means
limx;. Let e, e* for k&It be those elements of ¢ defined respectively
by e;=1 for each {& I+ and € =8, where 8, is the Kronecker delta.
B|c] is the Banach algebra of bounded linear operators on ¢ with || ral
=sup{||Tx||: xEc and |lx|| =1}. For each TEB|c], x(T)=lim Te
— Y lim Tet and xi(T) =(Te)i— >k (Te¥); for each iEI+, [2, p.
241]. Let

Q= {T € Blc]: lim xi(7) exists,}
1

Q= {T € Blc]: lim x:(T) = o}»,
1

r= {TG Blc]: Tisa.matrix},
¥ = {TET: x(T) =0},

M= {T < B[c]: For some scalar o, lim Tx = a lim x foreachx € c}.

T has the equivalent definition [2, p. 241]
{T € Blc]: x:(T) = 0 for each i € I+}.
We can write each T€B|c] as follows:
Tx = (lim x)» 4+ Bx for x € ¢,

where v = i x:(T) }, and B is the matrix obtained by restricting T to
those elements of ¢ which converge to 0. This relationship between T,
v, and B is denoted by T'~ (v, B). Further discussion of this represen-
tation is to be found in [1].

For T&Q define p(T) =x(B), where T~(v, B). Note that since
TEQ, BET, and so the definition makes sense.

For TEB|c], [T] is the matrix representation of the second adjoint
of T. The entries of [T'] will be designated by the upper case letters
Ti; and are defined as follows: Tu=x(T), Ta=xi(T) for i>1, Ty;
=lim Te! for j>1, and Ty;=b;4,;—1 for £>1 and j>1, where
T~ (v, B). [T] is related to T by the equation Tx = J-[T]Jx for each
x&c, where Jx= {lim X, X1, Xgy ¢+ ¢ } The representation [T] has
the advantage that it displays many salient properties of T, and will
be used extensively in what follows.

For TEQ define V(T)EQ by V(Tu=lim x«(7), V(D)a=xi(T)
for i>1, V(T);;=0 otherwise (where V(T);; are the entries of
[V(T)]), and define B(T)ET by B(Tu=p(T), B(T)a=0 for 1>1,
B(T);;=T;; otherwise. Note that T'=V(T')+B(T).
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The following conventions are made. E always represents the
operator (e, 0). A always designates a subalgebra of B|c], and every
algebra mentioned is assumed to be a subalgebra of B[c]. All undes-
ignated entries in a matrix are assumed to be zero. “Scalar homo-
morphism” means “nonzero scalar homomorphism.”

P[‘urther properties of x, p, x1, @, [T], (v, B), etc. are developed
in [1].

1. Algebras containing ¥. Results of this section establish that the
only subalgebras of B[c] which contain ¥ are ¥, T, p1, , and BJc].
We begin with a technical lemma. Let m denote the Banach space of
bounded sequences.

1.1. LEMMA. If 2Em and xEm —c, then there exists REMNVY so
that z=Rx.

Proor. Let a and B be distinct cluster points of x with B70. Let
{n(j)} and {k(j)} be disjoint strictly increasing subsequences of I+
so that for jEIt, x,¢; #0 and xx¢; B, and so that lim; xi; =« and
lim; x.(5 =B. Define the subsequence {m(j) } of It by m(2j—1) =n(j)
and m(27) =k(j).

We now define five matrices whose product is the desired matrix R.

Vi tmiy = 1,
U: tsja,01=1/(VE)2jm1,  #250 = 1/8,
W:w;=1, w41 =Wy 121 = —1,
P: pajoi =1/ ((mi/B) — 1), paj—r,2-1=1/((«/B) — 1),
Q: gsi = — grirn = (1%,
Obviously V, U, W, P, and Q are all in M. Moreover, Q is in ¥ and

V¥ is an ideal in I'. Therefore, R=Q P W U VEMNY. That s=Rx
is a straightforward computation.

1.2. LEMMA. No proper algebra contains x 1.

ProoF. Since x is linear, x. is a maximal subspace of B[c]. The
result follows since x. is not an algebra [2, Lemma 3].

1.3. TuEOREM. B|[c] is the only algebra containing V and some ele-
ment not in .

ProoF. Let ADV¥ and let SEA—Q. By Lemma 1.2 it suffices to
show that ADx.. By Lemma 1.1, given TE€x.1 we may choose
REMNY so that {x«(T)}=R{x:(S)}. Then T—RSEV since the
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first column of [T—RS] is zero. Hence T=T—RS+RSEA, and so
A must be Blc].

Let B, be the set of TE€B[c] such that all columns of [T] are zero
except the first which is in ¢, and let By be the set of those T in B,
whose first column converges to zero.

1.4. LEMMA. Any algebra containing ¥ and a nonmatrix contains B,.
Proor. Let ADV and let SEA-T. If TEB,, then

T - (um T.-,)E € Bo.

Hence to show that ADB, it suffices to show that EEA and that
ADB,.

Since SET, x«(S) #0 for some kE I'+. Define VEY by v =1 /xx(S).
Clearly VSEA. Define PEY by pi;=(Se?)r/xx(S) for each jEI+.
Then letting F=VS—P we see that Fyy1=1. Thus, by defining
GEVY by Gix1=1 for 1EI*, we establish that E=GFEA.

Finally, if TEB, define REY by ry=T; for iEI+. Then T
=RECA.

1.5. THEOREM. The only algebras in Q whick contain ¥ and a non-
matrix are Q and p..

Proor. That Q is an algebra can be verified by computing [S] [T]
for S, T&Q. To show that p1 is an algebra we need only show that
STEpr whenever S, TEp.. If TEQ, then [T]ET. Since x is multi-
plicative on I and since [ST|=[S] [T], it remains to show that p(T)
=x([T]). But if T~(v, B), then

o(T) = x(B) = lim 3 bs; — 3. lim by = lim (x,.(T) + 2 b,.,)

~ (im0 + Sim ) = x(7D.

Thus, pu1 is an algebra.

Now suppose that 2 DADV¥ and A—T'## . Then by Lemma 1.4,
ADB.. Either A—p1# & or ACp..

In the first case, there exists T'©€A—pi. Since TEQ, T
=V(T)+B(T) with B(T)EA. (Indeed, TEA and V(T)EB.CA.)
Thus if SEQ, then S=V(S)+B(S) with V(S)EA and B(S)EA be-
cause B(S) —(p(S)/p(T))B(T)E¥ CA. Hence SEA, and A=Q.

In the second case, if ACp., then for SEp., B(S)EVCA, and so
S€EA. It follows that A =p,. This completes the proof.
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Noticing that there are no algebras between I' and ¥ we now see
that the only subalgebras which contain ¥ are ¥, T', p1, ©, and B|c].

2. Algebras containing MNTI'. It is not difficult to observe that
TE M if and only if lim Te*=0 for each 1& I+, and hence that M is
an algebra. Using arguments similar to those in §1 we establish that
the only algebras containing MNTI"are MNT, T', MMQy, MNQ, Q, M,
and B]c]. It will be seen from the next section that no one of these
algebras can be realized as the kernel of a scalar homomorphism on a
larger algebra.

2.1. LEMMA. If an algebra contains MY and a nonmultiplicative
operator, then it contains V.

ProOF. Let A be such an algebra and let SEA— M. Then lim Se*
=b#0 for some k& It. Let T&V¥ and a;=lim Te* for each 1&I+.
Define VEMNVY by v;=a;/b for each j. The first row of [SV] is the
same as the first row of [T]. Therefore, T—SVEMNY so that
T=T-SV+SVEA.

2.2. THEOREM. The only algebras containing MM and some element
not in Q are M and B|c].

ProoF. Let A be such an algebra. If A— M## J, then, by Lemma
2.1,ADV. Hence by Theorem 1.3, A must be B[c]. On the other hand,
suppose AC M. Let TEM and SEA—Q. Using Lemma 1.1 choose
REMNYCA so that {x{(T)} =R{x:(S)}. Then RSEA and T—RS
& MNT. Therefore, T=T—RS+RSEA.

2.3. LEMMA. If an algebra contains MMT' and a nonmultiplicative
operator, then it contains the elements of I' whose columns are constant
sequences.

Proor. Let ADMNTI and let S’€A— M. Then for some k&SI,
lim S’¢*#0, and so for at most finitely many 3, say #(1), - - -, i(n),
(S’ek),'(z) =0. Define UEMf\I‘ by M) ,k=1 for 1§l§n. Then
S=U+S"EA and (Se*);#0 for each :&I*+. Define PEMNT by
pii=1/(Set); for each ¢&€I*. Then PSEA. Finally, define T& MMNT'
by f&;=a;, where Zla,-| <o, Then TPS is the matrix whose jth
column has the constant value o; and TPSEA.

2.4. THEOREM. There are no algebras between I' and MNT.

ProoF. Let ' DADMNT. If A% MNT, then, by Lemma 2.1, ADV¥
and A=V, But ¥ is a maximal subalgebra of I', and so we must have
A=T.
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2.5. THEOREM. Any algebra containing MMT' and a nonmatrix
contains MMQo.

ProoF. Let A be such an algebra. As in the proof of Lemma 1.4,
there exists k& I* so that FEA where F is defined by Fiy1.1=1. Now
let SEBy. Define S’EMNTI by S’ t41=3Sia. Then S=S'"FEA and
0 ADBo.

Now let TEMMNQ,. As in Theorem 1.5, T=V(T)+B(T) where
V(T)EBoand B(T)EMNTI'. Hence TEA.

2.6. THEOREM. Any algebra containing MNYT' and some nonmatrix
not in MN\Qy contains MMNQ.

ProoF. If A is such an algebra, then Theorem 2.5 implies AD B,.
Thus if TEMNQ, then V(T)EB, and B(T)&E MNT. Since By is a
maximal subspace of B., it suffices to establish the existence of some
SEAN(B.— By).

If A—Q> J, the theorem follows from Theorem 2.2, and if A— M
# & then, by Lemmas 2.1 and 1.4, ADB.. Therefore, it suffices to
consider the case MMQDA.

Let S"EA—MNQy. Then B(S)EMNT and so V(S’)EA. Since
S'&Qo, V(S')EBg and so V(S') is the desired S.

2.7. THEOREM. Any algebra containing MNT and a nonmultiplica-
tive operator is ' or contains Q. -

Proor. By Lemma 2.3, if A is such an algebra, then A contains
those elements of I' whose columns are constant sequences. If ACT
then, by Theorem 2.4, A=T. If AQT then, by Lemmas 2.1 and 1.4,
ADB. and so, by Theorem 2.6, AD MNXL.

Now let T€Q. Define A EA by A; ;;1=lim Te for jEI+ and i>1.
Then T—AEMNQCA and so TEA.

3. Scalar homomorphisms on subalgebras of B[c]. In this section
we will establish that if A is any one of the nine algebras discussed in
§81 and 2, and if there exists a scalar homomorphism on A, then it is
either x or p.

Let 6 denote the compact operators in B[c]. It is known that
AEBNT if and only if D | a,.k| converges uniformly with respect to
n, and that ¥ DONT (see [2]).

3.1. LeMMA. There is no scalar homomorphism on 6NT.

Proor. Let A€ONT and for jEI* let C7’EONT be defined by
Cl=aiifori€I+. Since ACONT, A= Y >, Ci where the convergence
of the sum is in the usual norm topology of T'. Since F is continuous,
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F(A)= >, F(C). Let jEI+. Define R, LET by r;,;;1=1 and
li1,5=1. Then R?=L%*=0and C’RL = C’. Therefore, F(C?) = F(C‘RL)
=0.

3.2. THEOREM. There is no scalar homomorphism on ¥ or on MMV,

Proor. Let BEVY. Define B'SONT by b;=lim, by, for 2, jEIT.
Then letting A =B—B’ we get A€ MNY (because INT'C¥), and
by Lemma 3.1 F(4) = F(B). It, therefore, suffices to show that there
is no scalar homomorphism on MMNV¥.

Let AEMNY and assume F(4)#0 for some scalar homomor-
phism. Write 4 =4;44:=A4;+ 4,4, where 4, (respectively 4,) is the
result of replacing the even (respectively odd) rows of 4 by zeros,
and where A4; (respectively 44) is the result of replacing the 4n—1
and 4n (respectively 4n—3 and 4n —2) rows of 4 by zeros. Let P, Q,
R, S be the elements of MMV defined as follows:

1 = pon,an—1= — Pan.2n = Qon—1,22 = — Q2n—1,2241
= Tin—1,4n—3 = Tin,dn-2 = — Tin—1,4n—1 = — f4n,4n
= Sdn—3,4n—1 = Stn—2,4n = — Sin—3,4n+1 = — Sin—2,dni2.

Then QPA,=A4, PQAy=A;, SRA;=A4; and RSA.=A4, Since
F(A4)#0, either F(4,)0 or F(A4:)#0. In either case F(P)#0 and
F(Q)#0. Similarly, F(R)#0 and F(S)#0. Now represent S by
S=3S1+S,, where S; (respectively S:) is the result of replacing the
4n—2 (respectively 4n—3) rows of S by zeros. Since F(S) #0, either
F(S1)#0 or F(S;)#0. Either case yields a contradiction since S;P
=0=.2S5:Q. Hence, F(4)#0 is impossible.

3.3. COROLLARY. x is the only scalar homomorphism on T and on
MNT.

3.4. THEOREM. p is a scalar homomorphism on Q.

Proor. This result follows from the fact that pi is an algebra
(Theorem 1.5) and from [3, Lemma 3, p. 234].

3.5. THEOREM. x and p are the only possible scalar homomorphisms
on any algebra in Q which contains either ¥ or MNT.

Proor. Let A be such an algebra. As shown in §§1 and 2, A must be
one of seven possible algebras. It follows that for any TEA, V(T)EA
and B(T)EA. Therefore, for any scalar homomorphism Fon A, F(T)
=F(V(T))+F(B(T)). Since ACQ, {B(T): TEA} is a subalgebra of
T’ containing either ¥ or MNI'. Therefore, by Theorem 2.4, Corol-
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lary 3.3, and the fact that there are no subalgebras between T
and V¥, FB(D))=x(B(T))=p(T). Moreover, since (V(T))*
= (lim; x:(T)) V(T), either F(V(T))=0 or F(V(T))=lim;x:(T).
Therefore, either F(T) =p(T) or F(T)=lim; x:(T) +p(T) =x(T).

3.6. COROLLARY. x and p are the only scalar homomorphisms on
MNQ and on MN\Q,, and, in fact, x =p on MMQ,.

3.7. LEmMA. If EEA and if F(E)#0 for some scalar homomorphisms
Fon A, then F(T)=1lim Te for every TEA.

Proor. Since E?=E, F(E)=1. If TEA, then V(ET)=x(T)E and
B(ET)=BEA where b;j=lim Te' for i, j&I*. Therefore, F(T)
=x(T)+F(B). But F(B)=F(BE)= ) ;. lim T¢, and so (by the
definition of x) F(T)=1lim Te.

3.8. THEOREM. p is the only scalar homomorphism on Q and there is
no scalar homomorphism on p..

Proor. This is an immediate consequence of Theorem 3.5 and
Lemma 3.7.

3.9. THEOREM. x is the only scalar homomorphism on M and there is
no scalar homomorphism on B|c].

Proor. It is clear that x is a scalar homomorphism on M but not
on Blc]. By noting that EE M and that x(T) =lim Te for T€ M but
not for all TEB|c], it suffices, by Lemma 3.7, to show that F(E)#0
for any scalar homomorphism F on M or on Blc].

Let I denote the identity operator. Then F(I)=1. Consider the
following operators P, Q, R, Sin M.

Pony = Qzuys1 = Rony = Songsn = — 15
Pzn,zn = Q2n+3.2n+3 = R2n.2n+l = S2n+8,2n+2 = 1.

Then P+Q=I—E and so if F(E)=0, either F(P)##0 or F(Q)#0.
However, RSP=P, RP=0, SRQ=0Q, and SQ=0, so that F(P)=0
and F(Q) =0. This contradiction establishes the theorem.
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