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Introduction. The algebra Y of conservative matrices is partitioned

by the ideal ^ of conull matrices and the set of coregular matrices.

This paper is concerned with the problem of extending the concept

of conullity from Y to the algebra B [c] of bounded linear operators

on the space c oí convergent sequences. Since ^ can be realized as the

kernel of a scalar homomorphism % on T (i.e., x is a linear functional

on T so that x(AB) =%(A)x(B) for A, BEY), one possibility is to

consider extensions of x in hopes that their kernels will be the natural

extensions of1!7. Wilansky [2, p. 250, Question 3] considers two such

extensions, x and p, and observes that they both fail to be a scalar

homomorphism on 73 [c]. By investigating the algebraic structure of

B [c] it is seen that, in a sense, Wilansky's extensions are the only

ones possible. For example, in §1 it is proved that the only subalge-

bras of B [c] which properly contain ^ are Y, pj. (the kernel of p), ß

(the domain of p), and B[c]. In §3 it is proved that x is the only non-

zero scalar homomorphism on Y, that p is the only nonzero scalar

homomorphism on ß, and that there are no nonzero scalar homomor-

phisms on B[c]. From these facts we can conclude that p is the only

extension of x to a scalar homomorphism on a subalgebra of B[c].

Therefore, if we are to extend the concept of conullity by means of

scalar homomorphisms, then p± becomes the natural definition for

conullity in B [c].

Let M designate the multiplicative operators in B[c] (defined

below). Unlike the conull-coregular dichotomy in Y, the dichotomy of

multiplicative and nonmultiplicative matrices cannot be effected by

a scalar homomorphism. We show that this behavior is retained in

subalgebras of B[c] containing MCSY. For example, in §2 it is seen

that the only subalgebras of B [c] which properly contain MC\Y are

T, MC\tto (defined below), MC\ti, ß, M, and B[c]. Moreover, in §3 it

is proved that p and x are the only nonzero scalar homomorphisms

on any of the above subalgebras of M. Hence no one of these algebras

can be realized as the kernel of a scalar homomorphism on a larger

algebra.
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Definitions, notation, and background, c is the Banach space of

convergent sequences x with ||x|| =sup |x,|. For xQc, lim x means

lim.Xi. Let e, eh for kQI+ be those elements of c defined respectively

by e< = l for each iQI+ and ¿¡ = 5« where 5a is the Kronecker delta.

B [c] is the Banach algebra of bounded linear operators on c with || T\\

= sup{||Px|| : xQc and |lx||^l}. For each rG5[c], x(P)=um Te

-£tlim Tek and x.(P) = (7e)<- £* (Te*)t for each ÍQI+, [2, p.

241]. Let

0 = <T Q B[c]: lim xí(T) exists!

Oo = (tQB[c]: hmxi(T) = ol,

r = {T G P[c] : T is a matrix},

* = {TQT: x(T)=0},

M = {T G B [c] : For some scalar a, lim Tx = a lim x for each iGc),

T has the equivalent definition [2, p. 241]

{T G B[c] : Xi(T) = 0 for each ÍQI+}.

We can write each I£5[c] as follows:

Tx = (lim x)v + Bx       for x Q c,

where v= j¡x»'(P)}, and P ¡s the matrix obtained by restricting P to

those elements of c which converge to 0. This relationship between T,

v, and P is denoted by T~(v, B). Further discussion of this represen-

tation is to be found in [l].

For TQÜ define p(T)=x(B), where T~(v, B). Note that since

TQtl, PGr, and so the definition makes sense.

For TQB [c], [T] is the matrix representation of the second adjoint

of P. The entries of [P] will be designated by the upper case letters

Tij and are defined as follows: Pn = x(P), P<i=X<-i(P) for «>1, Py

= lim Te''1 for j>l, and P<;=0j_i,3_i for i>l and j>l, where

T~(v, B). [P] is related to Pby the equation Tx = J~1[T]jx for each

xQc, where Jx= {lim x, xi, x2, • • • }. The representation [P] has

the advantage that it displays many salient properties of T, and will

be used extensively in what follows.

For TQÜ define V(T)QÜ by V(T)u = lim X<(P), F(P)il = x¿-i(P)
for I>1| F(P),y = 0 otherwise (where V(T)a are the entries of

[V(T)]), and define P(P)Gr by B(T)n=p(T), B(T)n = 0 for t>l,
B(T)ij = Tij otherwise. Note that T= V(T)+B(T).
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The following conventions are made. E always represents the

operator (e, 0). A always designates a subalgebra of B[c], and every

algebra mentioned is assumed to be a subalgebra of B [c]. All undes-

ignated entries in a matrix are assumed to be zero. "Scalar homo-

morphism" means "nonzero scalar homomorphism."

Further properties of x. P, X±, ßi [l], (v> B>), etc. are developed

in [1].

1. Algebras containing SF. Results of this section establish that the

only subalgebras of B [c] which contain ~fy are ^l, Y, p±, ß, and B[c].

We begin with a technical lemma. Let m denote the Banach space of

bounded sequences.

1.1. Lemma. If zEm and xEm—c, then there exists REMCvk so

that z=Rx.

Proof. Let a and ß be distinct cluster points of x with ß^O. Let

{«(/)} and {&(/)} be disjoint strictly increasing subsequences of 7+

so that for/E7+, xno)^0 and xk^)^ß, and so that limyxk(¡) =ct and

\imjXn(j)=ß. Define the subsequence (w(/)} of 7+ by m(2j— 1) =«(/)

and m(2j)=k(j).

We now define five matrices whose product is the desired matrix R.

V:  fly.mo) = 1,

U:   «y-l,2;-l = l/(Fx)jy_i, Uti.ti = 1//3,

W: wa = 1,       a»î/,î/+i = TO2y-i,2i+i = - 1,

P: ptjM = 1/((W£) - 1),       to-i.«M = l/((«//3) - 1),

Q-  q» = - Çy.y+i = (-!)%••

Obviously V, U, W, P, and Q are all in M. Moreover, Q is in ^ and

^ is an ideal in Y. Therefore, R = Q P W U VEMC^. That z=Rx
is a straightforward computation.

1.2. Lemma. No proper algebra contains xx-

Proof. Since x is linear, XJ- is a maximal subspace of B [c]. The

result follows since x-l is not an algebra [2, Lemma 3].

1.3. Theorem. B [c] is the only algebra containing "ir and some ele-

ment not in ß.

Proof. Let AD^ and let SEA—ß. By Lemma 1.2 it suffices to

show that ADx±. By Lemma 1.1, given TEx-t we may choose

REMrtir so that {x*(T)} =R{xí(S)}. Then T-RSE& since the
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first column of [P — RS] is zero. Hence P= T—RS+RSQA, and so

A must be B[c].

Let Be be the set of TQB[c] such that all columns of [P] are zero

except the first which is in c, and let B0 be the set of those P in Bc

whose first column converges to zero.

1.4. Lemma. ^4«y algebra containing ^ and- a nonmatrix contains Bc.

Proof. Let AD* and let SGA-r. If TQBC, then

P - Aim P,-i)p G Po.

Hence to show that ADPe it suffices to show that EQA and that

ADPo.
Since S(£Y, Xk(S)9*0ior some kQI+. Define VQV by r« = l/x*(5).

Clearly F5GA. Define PG* by pkj^(Se')k/xk(S) for each ¿e/+.
Then letting P= VS—P we see that P*+i,i=l. Thus, by defining

GQ$ by G,-,jfc+i = l for iQI+, we establish that E = GFQA.
Finally, if PGPo define RQV by rtl = P,i for ÍQI+. Then P

= PPGA.

1.5. Theorem. The only algebras in 0 which contain * and a non-

matrix are Í2 and p±.

Proof. That ß is an algebra can be verified by computing [S] [P]

for S, TQÜ. To show that p± is an algebra we need only show that

STQp± whenever S, TQp±. If TQti, then [P]Gr. Since x is multi-
plicative on T and since [ST] = [S] [T], it remains to show that p(T)

=X([P]). But if P~(», B), then

P(T) = x(B) = lim £ bnj - £ lim bnj = lim (Xn(T) + £ ônj)

- (lim x„(r) + £ lim o„y) = x([r]).
\   n j       n /

Thus, pi is an algebra.

Now suppose that ÍOAD* and A—Y9*0. Then by Lemma 1.4,
A3PC. Either A —pi ̂  0 or ACpx.

In the first case, there exists TQA—pL. Since TQQ, T

= V(T)+B(T) with B(T)QA. (Indeed, PGA and V(T)QBCQA.)
Thus if SQti, then 5= V(S)+B(S) with F(5)GA and B(S)QA be-
cause P(5)-(p(5)/p(P))P(P)G*CA. Hence SGA, and A = fí.

In the second case, if ACpj-, then for SQp±, B(S)Q^iQA, and so

SQA. It follows that A=p±. This completes the proof.
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Noticing that there are no algebras between Y and ^ we now see

that the only subalgebras which contain ^ are ty, Y, p±, ß, and B [c].

2. Algebras containing M!~\Y. It is not difficult to observe that

TEM if and only if lim 7V = 0 for each iEI+, and hence that M is

an algebra. Using arguments similar to those in §1 we establish that

the only algebras containing MC\Y are MC\Y, Y, MÍMl0, Mf~\Q, ß, M,

and B [c]. It will be seen from the next section that no one of these

algebras can be realized as the kernel of a scalar homomorphism on a

larger algebra.

2.1. Lemma. If an algebra contains MPvir awd a nonmultiplicative

operator, then it contains M'.

Proof. Let A be such an algebra and let SEA — M. Then lim Sek

= 0^0 for some kEI+- Let TE^ and a, = lim TV for each iEI+-

Define VEMi^t by vkj = aj/b for each/. The first row of [SV] is the

same as the first row of [T]. Therefore, T—SVEMCYS? so that

T=T-SV+SVEA.

2.2. Theorem. The only algebras containing MC\Y and some element

not in ß are M and B[c].

Proof. Let A be such an algebra. If A — Mt¿0, then, by Lemma

2.1, AD1!7. Hence by Theorem 1.3, A must be B [c]. On the other hand,

suppose AEM. Let TEM and SEA— ß. Using Lemma 1.1 choose

REMCvirCA so that {xí(T)} =R{x¡(S)}. Then RSEA and T-RS
EMi\Y. Therefore, T= T-RS+RSEA.

2.3. Lemma. If an algebra contains MCSY and a nonmultiplicative

operator, then it contains the elements of Y whose columns are constant

sequences.

Proof. Let A~3MC\Y and let S'EA-M. Then for some ¿E7+,

lim 5^*5^0, and so for at most finitely many i, say i(l), ■ • • , i(n),

(S'ek)Hi)=0. Define UEMC\Y by /*«».* = 1 for l = / = «. Then
S=f7+S'EA and (5e*)¿^0 for each ÍEI+- Define PEMC\Y by
pa=l/(Sek)i for each ¿E7+. Then PSEA. Finally, define TEMC\Y
by tkj = aj, where 231 ai\ <°°- Then TPS is the matrix whose/th

column has the constant value a¡ and TPSEA.

2.4. Theorem. There are no algebras between Y and M(~\T.

Proof. Let TDADMC\Y. If A¿¿MC\Y, then, by Lemma 2.1, AD1*'
and Aj¿^&. But ^ is a maximal subalgebra of Y, and so we must have

A=r.
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2.5. Theorem. Any algebra containing M(~\Y and a nonmatrix

contains JlPC\flu.

Proof. Let A be such an algebra. As in the proof of Lemma 1.4,

there exists kQI+ so that PGA where P is defined by P*+i,i = 1. Now

let SGPo. Define S'QMC\Y by S'ilk+i = Sa. Then S = S'PGA and
so ADPo.

Now let TQMCWo. As in Theorem 1.5, T=V(T)+B(T) where

V(T)QBo and B(T)QMC\Y. Hence PGA.

2.6. Theorem. Any algebra containing MC\Y and some nonmatrix

not in M(~\Slo contains MC\Ü.

Proof. If A is such an algebra, then Theorem 2.5 implies A3P0.

Thus if TQMi\Q, then V(T)QBC and B(T)QMCSY. Since P„ is a
maximal subspace of Bc, it suffices to establish the existence of some

SQAn(Bc-Bo).
If A — 0.9*0, the theorem follows from Theorem 2.2, and if A —If

9*0 then, by Lemmas 2.1 and 1.4, AZ)PC. Therefore, it suffices to

consider the case MÍ^Ü_~)A.

Let S'QA-Mi\Qo. Then B(S')QMC\Y and so F(5')GA. Since
S%Qo, F(5')GPo and so V(S') is the desired S.

2.7. Theorem. Any algebra containing MC\Y and a nonmultiplica-

tive operator is Y or contains Q.

Proof. By Lemma 2.3, if A is such an algebra, then A contains

those elements of Y whose columns are constant sequences. If ACr

then, by Theorem 2.4, A=T. If ACÍT then, by Lemmas 2.1 and 1.4,
ADP, and so, by Theorem 2.6, ADMC\Q,.

Now let TQti. Define ylGA by ^,■,;•+! = lim TesiorjQI+ and t>l.

Then T-AQMCWQA and so PGA.

3. Scalar homomorphisms on subalgebras of B[c\. In this section

we will establish that if A is any one of the nine algebras discussed in

§§1 and 2, and if there exists a scalar homomorphism on A, then it is

either x or p.

Let 6 denote the compact operators in B[c], It is known that

A Q6r\Y if and only if £& | ank\ converges uniformly with respect to

«, and that ^DörYT (see [2]).

3.1. Lemma. There is no scalar homomorphism on 9r\T.

Proof. Let ^G^nr and for JQI+ let C'G0nr be defined by
Cy = a,7 for iQI+. Since A Q6r\Y, A = £" i C' where the convergence

of the sum is in the usual norm topology of Y. Since P is continuous,
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^4) = 23"-i W)- Let /E7+. Define R, LEY by r>.y+i = l and
li+i,i = 1. Then R2 = L2 = 0 and C'RL = O. Therefore, F(C') = F(C'RL)
= 0.

3.2. Theorem. There is no scalar homomorphism on S? or on MCVi!.

Proof. Let BE*. Define B'Edr\Y by b^limth,- for ¿, /E7+.
Then letting A=B-B' we get ^EAfCVi7 (because flnrE^), and

by Lemma 3.1 F(A) = F(B). It, therefore, suffices to show that there

is no scalar homomorphism on Mí~\í?.

Let AEMryif and assume F(A)^0 for some scalar homomor-

phism. Write A =Ai+Ai = A%+Ai, where Ai (respectively .42) is the

result of replacing the even (respectively odd) rows of A by zeros,

and where A3 (respectively -44) is the result of replacing the 4« —1

and 4« (respectively 4»—3 and 4« —2) rows of A by zeros. Let P, Q,

R, S be the elements of JiH^ defined as follows:

1   = pin,in-l =   — pin.in = ?2n-l,2n =   ~ ?2n-l,2n+l

=  r4„_l,4n_3 = r4„,4n-2 =   — r4n-l,4n-l =   — f 4,1,4,»

= 54„_3,4n_i = Í4n-2,4i> =   — 54n-3,4n+l =   — Sin-2,4n+l-

Then QPAi = Au PQA2 = A2, SRA3 = A3, and RSAi = AA. Since
F(A)^0, either F(^i)^0 or F(^2)^0. In either case T^P^O and

F(Q)^0. Similarly, F(R)^0 and F(S)^0. Now represent S by

S = Si+S2, where Si (respectively S2) is the result of replacing the

4« —2 (respectively 4« —3) rows of 5 by zeros. Since F(S)yi0, either

F(Si)9¿0 or F(S2)¿¿0. Either case yields a contradiction since SiP

= 0 = S2Q. Hence, F(A)^0 is impossible.

3.3. Corollary, x is the only scalar homomorphism on Y and on

Mf~\Y.

3.4. Theorem, p is a scalar homomorphism on ß.

Proof. This result follows from the fact that p¿ is an algebra

(Theorem 1.5) and from [3, Lemma 3, p. 254].

3.5. Theorem, x awá p are the only possible scalar homomorphisms

on any algebra in ß which contains either "if or M(~\Y.

Proof. Let A be such an algebra. As shown in §§1 and 2, A must be

one of seven possible algebras. It follows that for any TEA, V(T) EA

and B(T)EA. Therefore, for any scalar homomorphism Fon A, F(T)

= F(V(T)) + F(B(T)). Since ACß, {B(T): TEA} is a subalgebra of
T containing either ^ or Mi\Y. Therefore, by Theorem 2.4, Corol-
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lary 3.3, and the fact that there are no subalgebras between Y

and *, F(B(T))=x(B(T))=P(T). Moreover, since (V(T))2

= (limiXi(T))V(T), either P(F(P))=0 or F(V(T)) =limjX,(P).

Therefore, either F(T) =p(T) or F(T) = lim¿ Xi(T) +p(T) =x(T).

3.6. Corollary, x and p are the only scalar homomorphisms on

MC\Q, and on AfPifio, and, in fact, x=P on MC\Çlo-

3.7. Lemma. If EQA and if F(E)9*0for some scalar homomorphisms

F on A, then F(T) =lim Te for every TQA.

Proof. Since P2 = P, P(P) = 1. If PGA, then F(PP)=X(P)P and
B(ET)=BQA where 0,7 = lim Te' for i, jQI+. Therefore, F(T)

= X(T) + F(B). But P(P) = P(PP)=£"1lim Te\ and so (by the

definition of x) F(T) =lim Te.

3.8. Theorem, p is the only scalar homomorphism on Q, and there is

no scalar homomorphism on pi.

Proof. This is an immediate consequence of Theorem 3.5 and

Lemma 3.7.

3.9. Theorem, x is the only scalar homomorphism on M and there is

no scalar homomorphism on B[c].

Proof. It is clear that x is a scalar homomorphism on M but not

on B [c]. By noting that EQM and that x(P) = lim Te for TQM but

not for all TQB [c], it suffices, by Lemma 3.7, to show that F(E)?*0

for any scalar homomorphism P on M or on B [c].

Let I denote the identity operator. Then F(I) = 1. Consider the

following operators P, Q, R, S in M.

Pin.l  = Qin+Z,l —  Rin.l = £2,1+3,1 =   —  lj

Pin.in   =  Qln+%,in+S  =  P2n,2n+1   = 02n+J,2>>+2  =   1.

Then P+Q = I-E and so if P(P)=0, either F(P)9*0 or F(Q)9*0.
However, RSP = P, PP = 0, SRQ = Q, and SQ = 0, so that P(P)=0
and F(Q) =0. This contradiction establishes the theorem.
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