THE STRUCTURE OF B[c] AND EXTENSIONS OF THE CONCEPT OF CONULL MATRIX

H. I. BROWN, D. R. KERR AND H. H. STRATTON²

Introduction. The algebra Γ of conservative matrices is partitioned by the ideal Ψ of conull matrices and the set of coregular matrices. This paper is concerned with the problem of extending the concept of conullity from Γ to the algebra B[c] of bounded linear operators on the space c of convergent sequences. Since Ψ can be realized as the kernel of a scalar homomorphism χ on Γ (i.e., χ is a linear functional on Γ so that $\chi(AB) = \chi(A)\chi(B)$ for $A, B \in \Gamma$), one possibility is to consider extensions of χ in hopes that their kernels will be the natural extensions of Ψ . Wilansky [2, p. 250, Question 3] considers two such extensions, χ and ρ , and observes that they both fail to be a scalar homomorphism on B[c]. By investigating the algebraic structure of B[c] it is seen that, in a sense, Wilansky's extensions are the only ones possible. For example, in §1 it is proved that the only subalgebras of B[c] which properly contain Ψ are Γ , ρ_{\perp} (the kernel of ρ), Ω (the domain of ρ), and B[c]. In §3 it is proved that χ is the only nonzero scalar homomorphism on Γ , that ρ is the only nonzero scalar homomorphism on Ω , and that there are no nonzero scalar homomorphisms on B[c]. From these facts we can conclude that ρ is the only extension of χ to a scalar homomorphism on a subalgebra of B[c]. Therefore, if we are to extend the concept of conullity by means of scalar homomorphisms, then ρ_{\perp} becomes the natural definition for conullity in B[c].

Let M designate the multiplicative operators in B[c] (defined below). Unlike the conull-coregular dichotomy in Γ , the dichotomy of multiplicative and nonmultiplicative matrices cannot be effected by a scalar homomorphism. We show that this behavior is retained in subalgebras of B[c] containing $M \cap \Gamma$. For example, in §2 it is seen that the only subalgebras of B[c] which properly contain $M \cap \Gamma$ are Γ , $M \cap \Omega_0$ (defined below), $M \cap \Omega$, Ω , M, and B[c]. Moreover, in §3 it is proved that ρ and χ are the only nonzero scalar homomorphisms on any of the above subalgebras of M. Hence no one of these algebras can be realized as the kernel of a scalar homomorphism on a larger algebra.

Received by the editors August 19, 1968.

¹ Research partially supported by NSF Grant GP-8199.

² Research partially supported by NSF Grant GP-8502.

Definitions, notation, and background. c is the Banach space of convergent sequences x with $||x|| = \sup |x_i|$. For $x \in c$, $\lim x$ means $\lim_i x_i$. Let e, e^k for $k \in I^+$ be those elements of c defined respectively by $e_i = 1$ for each $i \in I^+$ and $e^k_i = \delta_{ik}$ where δ_{ik} is the Kronecker delta. B[c] is the Banach algebra of bounded linear operators on c with $||T|| = \sup\{||Tx||: x \in c \text{ and } ||x|| \le 1\}$. For each $T \in B[c]$, $\chi(T) = \lim_i Te - \sum_k \lim_i Te^k$ and $\chi_i(T) = (Te)_i - \sum_k (Te^k)_i$ for each $i \in I^+$, [2, p. 241]. Let

$$\Omega = \left\{ T \in B[c] \colon \lim_{t} \chi_{i}(T) \text{ exists,} \right\}$$

$$\Omega_{0} = \left\{ T \in B[c] \colon \lim_{t} \chi_{i}(T) = 0 \right\},$$

$$\Gamma = \left\{ T \in B[c] \colon T \text{ is a matrix} \right\},$$

$$\Psi = \left\{ T \in \Gamma \colon \chi(T) = 0 \right\},$$

$$M = \left\{ T \in B[c] \colon \text{For some scalar } \alpha, \lim Tx = \alpha \lim x \text{ for each } x \in c \right\}.$$

 Γ has the equivalent definition [2, p. 241]

$$\{T \in B[c]: \chi_i(T) = 0 \text{ for each } i \in I^+\}.$$

We can write each $T \in B[c]$ as follows:

$$Tx = (\lim x)v + Bx$$
 for $x \in c$,

where $v = \{\chi_i(T)\}$, and B is the matrix obtained by restricting T to those elements of c which converge to 0. This relationship between T, v, and B is denoted by $T \sim (v, B)$. Further discussion of this representation is to be found in [1].

For $T \in \Omega$ define $\rho(T) = \chi(B)$, where $T \sim (v, B)$. Note that since $T \in \Omega$, $B \in \Gamma$, and so the definition makes sense.

For $T \in B[c]$, [T] is the matrix representation of the second adjoint of T. The entries of [T] will be designated by the upper case letters T_{ij} and are defined as follows: $T_{11} = \chi(T)$, $T_{i1} = \chi_{i-1}(T)$ for i > 1, $T_{1j} = \lim_{t \to \infty} Te^{j-1}$ for j > 1, and $T_{ij} = b_{i-1,j-1}$ for i > 1 and j > 1, where $T \sim (v, B)$. [T] is related to T by the equation $Tx = J^{-1}[T]Jx$ for each $x \in c$, where $Jx = \{\lim_{t \to \infty} x, x_1, x_2, \cdots \}$. The representation [T] has the advantage that it displays many salient properties of T, and will be used extensively in what follows.

For $T \in \Omega$ define $V(T) \in \Omega$ by $V(T)_{11} = \lim_{i \to \infty} \chi_i(T)$, $V(T)_{i1} = \chi_{i-1}(T)$ for i > 1, $V(T)_{ij} = 0$ otherwise (where $V(T)_{ij}$ are the entries of [V(T)]), and define $B(T) \in \Gamma$ by $B(T)_{11} = \rho(T)$, $B(T)_{i1} = 0$ for i > 1, $B(T)_{ij} = T_{ij}$ otherwise. Note that T = V(T) + B(T).

The following conventions are made. E always represents the operator (e, 0). A always designates a subalgebra of B[c], and every algebra mentioned is assumed to be a subalgebra of B[c]. All undesignated entries in a matrix are assumed to be zero. "Scalar homomorphism" means "nonzero scalar homomorphism."

Further properties of χ , ρ , χ_{\perp} , Ω , [T], (v, B), etc. are developed in [1].

- 1. Algebras containing Ψ . Results of this section establish that the only subalgebras of B[c] which contain Ψ are Ψ , Γ , ρ_{\perp} , Ω , and B[c]. We begin with a technical lemma. Let m denote the Banach space of bounded sequences.
- 1.1. LEMMA. If $z \in m$ and $x \in m-c$, then there exists $R \in M \cap \Psi$ so that z = Rx.

PROOF. Let α and β be distinct cluster points of x with $\beta \neq 0$. Let $\{n(j)\}$ and $\{k(j)\}$ be disjoint strictly increasing subsequences of I^+ so that for $j \in I^+$, $x_{n(j)} \neq 0$ and $x_{k(j)} \neq \beta$, and so that $\lim_j x_{k(j)} = \alpha$ and $\lim_j x_{n(j)} = \beta$. Define the subsequence $\{m(j)\}$ of I^+ by m(2j-1) = n(j) and m(2j) = k(j).

We now define five matrices whose product is the desired matrix R.

$$V: v_{j,m(j)} = 1,$$

$$U: u_{2j-1,2j-1} = 1/(Vx)_{2j-1}, u_{2j,2j} = 1/\beta,$$

$$W: w_{jj} = 1, w_{2j,2j+1} = w_{2j-1,2j+1} = -1,$$

$$P: p_{2j,2j} = 1/((x_{k(j)}/\beta) - 1), p_{2j-1,2j-1} = 1/((\alpha/\beta) - 1),$$

$$Q: q_{jj} = -q_{j,j+1} = (-1)^{j}z_{j}.$$

Obviously V, U, W, P, and Q are all in M. Moreover, Q is in Ψ and Ψ is an ideal in Γ . Therefore, $R = Q P W U V \subset M \cap \Psi$. That z = Rx is a straightforward computation.

1.2. LEMMA. No proper algebra contains χ_{\perp} .

PROOF. Since χ is linear, χ_{\perp} is a maximal subspace of B[c]. The result follows since χ_{\perp} is not an algebra [2, Lemma 3].

1.3. THEOREM. B[c] is the only algebra containing Ψ and some element not in Ω .

PROOF. Let $\Lambda \supset \Psi$ and let $S \in \Lambda - \Omega$. By Lemma 1.2 it suffices to show that $\Lambda \supset \chi_{\perp}$. By Lemma 1.1, given $T \in \chi_{\perp}$ we may choose $R \in M \cap \Psi$ so that $\{\chi_i(T)\} = R\{\chi_i(S)\}$. Then $T - RS \in \Psi$ since the

first column of [T-RS] is zero. Hence $T=T-RS+RS \in \Lambda$, and so Λ must be B[c].

Let B_c be the set of $T \in B[c]$ such that all columns of [T] are zero except the first which is in c, and let B_0 be the set of those T in B_c whose first column converges to zero.

1.4. Lemma. Any algebra containing Ψ and a nonmatrix contains B_c .

Proof. Let $\Lambda \supseteq \Psi$ and let $S \in \Lambda - \Gamma$. If $T \in B_c$, then

$$T - \left(\lim_{i} T_{i1}\right) E \in B_{0}.$$

Hence to show that $\Lambda \supset B_c$ it suffices to show that $E \in \Lambda$ and that $\Lambda \supset B_0$.

Since $S \in \Gamma$, $\chi_k(S) \neq 0$ for some $k \in I^+$. Define $V \in \Psi$ by $v_{kk} = 1/\chi_k(S)$. Clearly $VS \in \Lambda$. Define $P \in \Psi$ by $p_{kj} = (Se^j)_k/\chi_k(S)$ for each $j \in I^+$. Then letting F = VS - P we see that $F_{k+1,1} = 1$. Thus, by defining $G \in \Psi$ by $G_{i,k+1} = 1$ for $i \in I^+$, we establish that $E = GF \in \Lambda$.

Finally, if $T \in B_0$ define $R \in \Psi$ by $r_{ii} = T_{i1}$ for $i \in I^+$. Then $T = RE \in \Lambda$.

1.5. Theorem. The only algebras in Ω which contain Ψ and a non-matrix are Ω and ρ_{\perp} .

PROOF. That Ω is an algebra can be verified by computing [S] [T] for S, $T \in \Omega$. To show that ρ_{\perp} is an algebra we need only show that $ST \in \rho_{\perp}$ whenever S, $T \in \rho_{\perp}$. If $T \in \Omega$, then $[T] \in \Gamma$. Since χ is multiplicative on Γ and since [ST] = [S] [T], it remains to show that $\rho(T) = \chi([T])$. But if $T \sim (v, B)$, then

$$\rho(T) = \chi(B) = \lim_{n \to \infty} \sum_{j} b_{nj} - \sum_{j} \lim_{n} b_{nj} = \lim_{n} \left(\chi_n(T) + \sum_{j} b_{nj} \right)$$
$$- \left(\lim_{n \to \infty} \chi_n(T) + \sum_{j} \lim_{n \to \infty} b_{nj} \right) = \chi([T]).$$

Thus, ρ_{\perp} is an algebra.

Now suppose that $\Omega \supset \Lambda \supset \Psi$ and $\Lambda - \Gamma \neq \emptyset$. Then by Lemma 1.4, $\Lambda \supset B_c$. Either $\Lambda - \rho_{\perp} \neq \emptyset$ or $\Lambda \subset \rho_{\perp}$.

In the first case, there exists $T \in \Lambda - \rho_{\perp}$. Since $T \in \Omega$, T = V(T) + B(T) with $B(T) \in \Lambda$. (Indeed, $T \in \Lambda$ and $V(T) \in B_c \subset \Lambda$.) Thus if $S \in \Omega$, then S = V(S) + B(S) with $V(S) \in \Lambda$ and $B(S) \in \Lambda$ because $B(S) - (\rho(S)/\rho(T))B(T) \in \Psi \subset \Lambda$. Hence $S \in \Lambda$, and $\Lambda = \Omega$.

In the second case, if $\Lambda \subset \rho_{\perp}$, then for $S \in \rho_{\perp}$, $B(S) \in \Psi \subset \Lambda$, and so $S \in \Lambda$. It follows that $\Lambda = \rho_{\perp}$. This completes the proof.

Noticing that there are no algebras between Γ and Ψ we now see that the only subalgebras which contain Ψ are Ψ , Γ , ρ_{\perp} , Ω , and B[c].

- 2. Algebras containing $M \cap \Gamma$. It is not difficult to observe that $T \in M$ if and only if $\lim Te^i = 0$ for each $i \in I^+$, and hence that M is an algebra. Using arguments similar to those in §1 we establish that the only algebras containing $M \cap \Gamma$ are $M \cap \Gamma$, Γ , $M \cap \Omega_0$, $M \cap \Omega$, Ω , M, and B[c]. It will be seen from the next section that no one of these algebras can be realized as the kernel of a scalar homomorphism on a larger algebra.
- 2.1. Lemma. If an algebra contains $M \cap \Psi$ and a nonmultiplicative operator, then it contains Ψ .

PROOF. Let Λ be such an algebra and let $S \in \Lambda - M$. Then $\lim Se^k = b \neq 0$ for some $k \in I^+$. Let $T \in \Psi$ and $a_i = \lim Te^i$ for each $i \in I^+$. Define $V \in M \cap \Psi$ by $v_{kj} = a_j/b$ for each j. The first row of [SV] is the same as the first row of [T]. Therefore, $T - SV \in M \cap \Psi$ so that $T = T - SV + SV \in \Lambda$.

2.2. THEOREM. The only algebras containing $M \cap \Gamma$ and some element not in Ω are M and B[c].

PROOF. Let Λ be such an algebra. If $\Lambda - M \neq \emptyset$, then, by Lemma 2.1, $\Lambda \supseteq \Psi$. Hence by Theorem 1.3, Λ must be B[c]. On the other hand, suppose $\Lambda \subset M$. Let $T \in M$ and $S \in \Lambda - \Omega$. Using Lemma 1.1 choose $R \in M \cap \Psi \subset \Lambda$ so that $\{\chi_i(T)\} = R\{\chi_i(S)\}$. Then $RS \in \Lambda$ and $T - RS \in M \cap \Gamma$. Therefore, $T = T - RS + RS \in \Lambda$.

2.3. Lemma. If an algebra contains $M \cap \Gamma$ and a nonmultiplicative operator, then it contains the elements of Γ whose columns are constant sequences.

PROOF. Let $\Lambda \supset M \cap \Gamma$ and let $S' \in \Lambda - M$. Then for some $k \in I^+$, $\lim S' e^k \neq 0$, and so for at most finitely many i, say $i(1), \dots, i(n)$, $(S' e^k)_{i(l)} = 0$. Define $U \in M \cap \Gamma$ by $\mu_{i(l),k} = 1$ for $1 \leq l \leq n$. Then $S = U + S' \in \Lambda$ and $(Se^k)_i \neq 0$ for each $i \in I^+$. Define $P \in M \cap \Gamma$ by $p_{ii} = 1/(Se^k)_i$ for each $i \in I^+$. Then $PS \in \Lambda$. Finally, define $T \in M \cap \Gamma$ by $t_{kj} = \alpha_j$, where $\sum |\alpha_j| < \infty$. Then TPS is the matrix whose jth column has the constant value α_j and $TPS \in \Lambda$.

2.4. Theorem. There are no algebras between Γ and $M \cap \Gamma$.

PROOF. Let $\Gamma \supset \Lambda \supset M \cap \Gamma$. If $\Lambda \neq M \cap \Gamma$, then, by Lemma 2.1, $\Lambda \supset \Psi$ and $\Lambda \neq \Psi$. But Ψ is a maximal subalgebra of Γ , and so we must have $\Lambda = \Gamma$.

2.5. THEOREM. Any algebra containing $M \cap \Gamma$ and a nonmatrix contains $M \cap \Omega_0$.

PROOF. Let Λ be such an algebra. As in the proof of Lemma 1.4, there exists $k \in I^+$ so that $F \in \Lambda$ where F is defined by $F_{k+1,1} = 1$. Now let $S \in B_0$. Define $S' \in M \cap \Gamma$ by $S'_{i,k+1} = S_{i1}$. Then $S = S'F \in \Lambda$ and so $\Lambda \supset B_0$.

Now let $T \in M \cap \Omega_0$. As in Theorem 1.5, T = V(T) + B(T) where $V(T) \in B_0$ and $B(T) \in M \cap \Gamma$. Hence $T \in \Lambda$.

2.6. THEOREM. Any algebra containing $M \cap \Gamma$ and some nonmatrix not in $M \cap \Omega_0$ contains $M \cap \Omega$.

PROOF. If Λ is such an algebra, then Theorem 2.5 implies $\Lambda \supset B_0$. Thus if $T \in M \cap \Omega$, then $V(T) \in B_c$ and $B(T) \in M \cap \Gamma$. Since B_0 is a maximal subspace of B_c , it suffices to establish the existence of some $S \in \Lambda \cap (B_c - B_0)$.

If $\Lambda - \Omega \neq \emptyset$, the theorem follows from Theorem 2.2, and if $\Lambda - M \neq \emptyset$ then, by Lemmas 2.1 and 1.4, $\Lambda \supset B_c$. Therefore, it suffices to consider the case $M \cap \Omega \supset \Lambda$.

Let $S' \in \Lambda - M \cap \Omega_0$. Then $B(S') \in M \cap \Gamma$ and so $V(S') \in \Lambda$. Since $S' \notin \Omega_0$, $V(S') \notin B_0$ and so V(S') is the desired S.

2.7. THEOREM. Any algebra containing $M \cap \Gamma$ and a nonmultiplicative operator is Γ or contains Ω .

PROOF. By Lemma 2.3, if Λ is such an algebra, then Λ contains those elements of Γ whose columns are constant sequences. If $\Lambda \subset \Gamma$ then, by Theorem 2.4, $\Lambda = \Gamma$. If $\Lambda \subset \Gamma$ then, by Lemmas 2.1 and 1.4, $\Lambda \supset B_c$ and so, by Theorem 2.6, $\Lambda \supset M \cap \Omega$.

Now let $T \in \Omega$. Define $A \in \Lambda$ by $A_{i,j+1} = \lim Te^j$ for $j \in I^+$ and i > 1. Then $T - A \in M \cap \Omega \subset \Lambda$ and so $T \in \Lambda$.

3. Scalar homomorphisms on subalgebras of B[c]. In this section we will establish that if Λ is any one of the nine algebras discussed in §§1 and 2, and if there exists a scalar homomorphism on Λ , then it is either χ or ρ .

Let θ denote the compact operators in B[c]. It is known that $A \in \theta \cap \Gamma$ if and only if $\sum_{k} |a_{nk}|$ converges uniformly with respect to n, and that $\Psi \supset \theta \cap \Gamma$ (see [2]).

3.1. Lemma. There is no scalar homomorphism on $\theta \cap \Gamma$.

PROOF. Let $A \in \theta \cap \Gamma$ and for $j \in I^+$ let $C^j \in \theta \cap \Gamma$ be defined by $C^j_{ij} = a_{ij}$ for $i \in I^+$. Since $A \in \theta \cap \Gamma$, $A = \sum_{j=1}^{\infty} C^j$ where the convergence of the sum is in the usual norm topology of Γ . Since F is continuous,

 $F(A) = \sum_{j=1}^{\infty} F(C^j)$. Let $j \in I^+$. Define R, $L \in \Gamma$ by $r_{j,j+1} = 1$ and $l_{j+1,j} = 1$. Then $R^2 = L^2 = 0$ and $C^jRL = C^j$. Therefore, $F(C^j) = F(C^jRL) = 0$.

3.2. Theorem. There is no scalar homomorphism on Ψ or on $M \cap \Psi$.

PROOF. Let $B \subseteq \Psi$. Define $B' \subseteq \theta \cap \Gamma$ by $b'_{ij} = \lim_k b_{kj}$ for $i, j \in I^+$. Then letting A = B - B' we get $A \subseteq M \cap \Psi$ (because $\theta \cap \Gamma \subset \Psi$), and by Lemma 3.1 F(A) = F(B). It, therefore, suffices to show that there is no scalar homomorphism on $M \cap \Psi$.

Let $A \in M \cap \Psi$ and assume $F(A) \neq 0$ for some scalar homomorphism. Write $A = A_1 + A_2 = A_3 + A_4$, where A_1 (respectively A_2) is the result of replacing the even (respectively odd) rows of A by zeros, and where A_3 (respectively A_4) is the result of replacing the 4n-1 and 4n (respectively 4n-3 and 4n-2) rows of A by zeros. Let P, Q, R, S be the elements of $M \cap \Psi$ defined as follows:

$$1 = p_{2n,2n-1} = -p_{2n,2n} = q_{2n-1,2n} = -q_{2n-1,2n+1}$$

$$= r_{4n-1,4n-3} = r_{4n,4n-2} = -r_{4n-1,4n-1} = -r_{4n,4n}$$

$$= s_{4n-3,4n-1} = s_{4n-2,4n} = -s_{4n-3,4n+1} = -s_{4n-2,4n+2}.$$

Then $QPA_1=A_1$, $PQA_2=A_2$, $SRA_3=A_3$, and $RSA_4=A_4$. Since $F(A)\neq 0$, either $F(A_1)\neq 0$ or $F(A_2)\neq 0$. In either case $F(P)\neq 0$ and $F(Q)\neq 0$. Similarly, $F(R)\neq 0$ and $F(S)\neq 0$. Now represent S by $S=S_1+S_2$, where S_1 (respectively S_2) is the result of replacing the 4n-2 (respectively 4n-3) rows of S by zeros. Since $F(S)\neq 0$, either $F(S_1)\neq 0$ or $F(S_2)\neq 0$. Either case yields a contradiction since $S_1P=0=S_2Q$. Hence, $F(A)\neq 0$ is impossible.

- 3.3. Corollary. χ is the only scalar homomorphism on Γ and on $M \cap \Gamma$.
 - 3.4. THEOREM. ρ is a scalar homomorphism on Ω .

PROOF. This result follows from the fact that ρ_{\perp} is an algebra (Theorem 1.5) and from [3, Lemma 3, p. 254].

3.5. THEOREM. χ and ρ are the only possible scalar homomorphisms on any algebra in Ω which contains either Ψ or $M \cap \Gamma$.

PROOF. Let Λ be such an algebra. As shown in §§1 and 2, Λ must be one of seven possible algebras. It follows that for any $T \in \Lambda$, $V(T) \in \Lambda$ and $B(T) \in \Lambda$. Therefore, for any scalar homomorphism F on Λ , F(T) = F(V(T)) + F(B(T)). Since $\Lambda \subset \Omega$, $\{B(T): T \in \Lambda\}$ is a subalgebra of Γ containing either Ψ or $M \cap \Gamma$. Therefore, by Theorem 2.4, Corol-

- lary 3.3, and the fact that there are no subalgebras between Γ and Ψ , $F(B(T)) = \chi(B(T)) = \rho(T)$. Moreover, since $(V(T))^2 = (\lim_i \chi_i(T)) V(T)$, either F(V(T)) = 0 or $F(V(T)) = \lim_i \chi_i(T)$. Therefore, either $F(T) = \rho(T)$ or $F(T) = \lim_i \chi_i(T) + \rho(T) = \chi(T)$.
- 3.6. COROLLARY. χ and ρ are the only scalar homomorphisms on $M \cap \Omega$ and on $M \cap \Omega_0$, and, in fact, $\chi = \rho$ on $M \cap \Omega_0$.
- 3.7. Lemma. If $E \in \Lambda$ and if $F(E) \neq 0$ for some scalar homomorphisms F on Λ , then $F(T) = \lim_{n \to \infty} Te$ for every $T \in \Lambda$.

PROOF. Since $E^2 = E$, F(E) = 1. If $T \in \Lambda$, then $V(ET) = \chi(T)E$ and $B(ET) = B \in \Lambda$ where $b_{ij} = \lim_{i \to \infty} Te^i$ for $i, j \in I^+$. Therefore, $F(T) = \chi(T) + F(B)$. But $F(B) = F(BE) = \sum_{i=1}^{\infty} \lim_{i \to \infty} Te^i$, and so (by the definition of χ) $F(T) = \lim_{i \to \infty} Te$.

3.8. Theorem. ρ is the only scalar homomorphism on Ω and there is no scalar homomorphism on ρ_{\perp} .

PROOF. This is an immediate consequence of Theorem 3.5 and Lemma 3.7.

3.9. THEOREM. χ is the only scalar homomorphism on M and there is no scalar homomorphism on B[c].

PROOF. It is clear that χ is a scalar homomorphism on M but not on B[c]. By noting that $E \in M$ and that $\chi(T) = \lim_{n \to \infty} Te$ for $T \in M$ but not for all $T \in B[c]$, it suffices, by Lemma 3.7, to show that $F(E) \neq 0$ for any scalar homomorphism F on M or on B[c].

Let I denote the identity operator. Then F(I) = 1. Consider the following operators P, Q, R, S in M.

$$P_{2n,1} = Q_{2n+3,1} = R_{2n,1} = S_{2n+3,1} = -1;$$

$$P_{2n,2n} = Q_{2n+3,2n+3} = R_{2n,2n+1} = S_{2n+3,2n+2} = 1.$$

Then P+Q=I-E and so if F(E)=0, either $F(P)\neq 0$ or $F(Q)\neq 0$. However, RSP=P, RP=0, SRQ=Q, and SQ=0, so that F(P)=0 and F(Q)=0. This contradiction establishes the theorem.

REFERENCES

- 1. J. P. Crawford, Transformations in Banach spaces with applications to summability theory, Ph.D. dissertation, Lehigh University, Bethlehem, Pa., 1966.
- 2. A. Wilansky, Topological divisors of zero and Tauberian theorems, Trans. Amer. Math. Soc. 113 (1964), 240-251.
 - 3. —, Functional analysis, Blaisdell, New York, 1964.

STATE UNIVERSITY OF NEW YORK AT ALBANY